检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在Notebook中通过镜像保存功能制作自定义镜像 通过预置的镜像创建Notebook实例,在基础镜像上安装对应的自定义软件和依赖,在管理页面上进行操作,进而完成将运行的实例环境以容器镜像的方式保存下来。镜像保存后,默认工作目录是根目录“/”路径。 保存的镜像中,安装的依赖包不丢失,持久化存储的部分(home/ma-
必选,选择“自定义”。 镜像 必填,填写容器镜像的地址。 容器镜像地址的填写支持如下方式。 选择自有镜像或他人共享的镜像:单击右边的“选择”,从容器镜像中选择用于训练的容器镜像。所需镜像需要提前上传到SWR服务中。 选择公开镜像:直接输入SWR服务中公开镜像的地址。地址直接填写“组织名称/镜像
安全边界 云服务的责任共担模型是一种合作方式,其中云服务提供商和云服务客户共同承担云服务的安全和合规性责任。这种模型是为了确保云服务的安全性和可靠性而设计的。 根据责任共担模型,云服务提供商和云服务客户各自有一些责任。云服务提供商负责管理云基础架构,提供安全的硬件和软件基础设施,
服务部署失败,报错No Module named XXX 问题现象 服务部署失败,报错:No Module named XXX 原因分析 No Module named XXX,表示模型中没有导入对应依赖模块。 处理方法 依赖模块没有导入,需要您在模型推理代码中导入缺失依赖模块。
S/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后
数,更多详细参数解释请参见部署在线服务。 图3 部署在线服务-专属资源池 单击“下一步”,再单击“提交”,开始部署服务,待服务状态显示“正常”服务部署完成。 Step4 调用在线服务 进入在线服务详情页面,选择“预测”。 若以vllm接口启动服务,设置请求路径:“/generat
S/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后
S/MBS的值能够被NPU/(TP×PP×CP)的值进行整除。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后
String 在线服务实例所在的虚拟私有云ID,服务自定义网络配置时返回。 subnet_network_id String 在线服务实例所在的子网的网络ID,服务自定义网络配置时返回。 security_group_id String 在线服务实例所在的安全组,服务自定义网络配置时返回。
业,提供高可用的训练环境 支持单机多卡、多机多卡的分布式训练,有效加速训练过程 支持训练作业的故障感知、故障诊断与故障恢复,包含硬件故障与作业卡死故障,并支持进程级恢复、容器级恢复与作业级恢复,提供容错与恢复能力,保障用户训练作业的长稳运行 提供训练作业断点续训与增量训练能力,即
HOST侧用户进程,在DEVICE侧产生的AICPU、HCCP的日志,回传到HOST侧(训练容器)。 如果出现如下情况,则device日志会获取不到。 节点异常重启 被主动停止的节点 在训练进程结束后,该日志会生成到训练容器中。其中,使用MindSpore预置框架训练的device日志会自动上传
载tokenizer与Hugging Face权重时,对应的存放地址。 在“输出”的输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging
载tokenizer与Hugging Face权重时,对应的存放地址。 在“输出”的输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging
载tokenizer与Hugging Face权重时,对应的存放地址。 在“输出”的输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging
提供模型的说明文档。单击“添加模型说明”,设置“文档名称”及其“URL”。模型说明最多支持3条。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。
参数优先级高于服务层级的cluster_id;当该参数未配置时,会使用服务层级的cluster_id参数。 pool_name 否 String real-time和batch服务类型可选。部署服务时使用的AI专属资源池弹性集群的资源池ID,使用专属资源池部署服务时需确保集群状态
载tokenizer与Hugging Face权重时,对应的存放地址。 在“输出”的输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging
载tokenizer与Hugging Face权重时,对应的存放地址。 在“输出”的输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging
载tokenizer与Hugging Face权重时,对应的存放地址。 在“输出”的输入框内设置变量:OUTPUT_SAVE_DIR、HF_SAVE_DIR。 OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging
细参数解释请参见部署在线服务。 图3 部署在线服务-专属资源池 单击“下一步”,再单击“提交”,开始部署服务,待服务状态显示“正常”服务部署完成。 注:若部署在线服务出现报错starting container process caused "exec: \"/home/mind/model/run_vllm