检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。
适用于已经自建AI开发平台,仅有算力需求的用户,提供高性价比的AI算力,并预装主流AI开发套件以及自研的加速插件。
# 启动命令行封装脚本,在install.sh里面自动构建 |──Megatron-LM/ # 适配昇腾的Megatron-LM训练框架 |──MindSpeed/ # MindSpeed昇腾大模型加速库
启动文件需要解析上述参数。
# 启动命令行封装脚本,在install.sh里面自动构建 |──Megatron-LM/ # 适配昇腾的Megatron-LM训练框架 |──MindSpeed/ # MindSpeed昇腾大模型加速库
# 启动命令行封装脚本,在install.sh里面自动构建 |──Megatron-LM/ # 适配昇腾的Megatron-LM训练框架 |──MindSpeed/ # MindSpeed昇腾大模型加速库
# 启动命令行封装脚本,在install.sh里面自动构建 |──Megatron-LM/ # 适配昇腾的Megatron-LM训练框架 |──MindSpeed/ # MindSpeed昇腾大模型加速库
它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。 Megatron-LM是一个用于大规模语言建模的模型。
与从头开始训练模型相比,监督式微调能够充分利用预训练模型的知识和特征表示,从而加速训练过程并提高模型的性能。 训练阶段下有不同的训练策略,分为全参数训练、部分参数训练、LoRA、QLoRA,本文档主要支持全参数(Full)和LoRA。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率
推理加速卡:无。 部署类型: 在线服务。 请求模式:同步请求。
解析输入路径参数、输出路径参数 运行在ModelArts的模型读取存储在OBS服务的数据,或者输出至OBS服务指定路径,输入和输出数据需要配置3个地方: 训练代码中需解析输入路径参数和输出路径参数。ModelArts推荐以下方式实现参数解析。
当资源池中有AI加速卡时,还会显示GPU、NPU的相关监控信息。 图4 查看资源视图 表1 监控指标 名称 指标含义 单位 取值范围 CPU使用量 该指标用于统计测量对象的CPU使用率。
https示例 使用Flask启动https,Webserver代码示例如下: from flask import Flask, request import json app = Flask(__name__) @app.route('/greet', methods=['
“MA_CURRENT_IP=192.168.23.38” MA_NUM_GPUS 作业容器的加速卡数量。
DeepSpeed是一个开源库,用于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示训练类型。
Manifest管理 Manifest管理概述 解析Manifest文件 创建和保存Manifest文件 解析Pascal VOC文件 创建和保存Pascal VOC文件 父主题: 数据管理
https示例 使用Flask启动https,Webserver代码示例如下: from flask import Flask, request import json app = Flask(__name__) @app.route('/greet', methods=['
ModelArts Standard推荐以下方式实现参数解析。