检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建导出任务 将当前数据集的样本导出到指定的OBS路径下。仅支持图像分类、物体检测、图像分割和自由格式数据集。 dataset.export_data(path) 示例代码 导出数据集到OBS目录 from modelarts.session import Session from
网络链路检查 在ModelArts控制台查看Notebook实例状态是否正常,确保实例无问题。 在VS Code Terminal里执行如下命令检测SSH命令是否可用; ssh -i <密钥相对路径> -p <端口> ma-user@<域名/ip> SSH可用时跳过3继续远端排查。 SSH不可用,排查3。
网络链路检查 在ModelArts控制台查看Notebook实例状态是否正常,确保实例无问题。 在VS Code Terminal里执行如下命令检测SSH命令是否可用; ssh -i <密钥相对路径> -p <端口> ma-user@<域名/ip> SSH可用时跳过3继续远端排查。 SSH不可用,排查3。
迁移走。 A050931 训练toolkit 预检容器 训练预检容器检测到GPU错误。 训练预检容器检测到GPU错误。 A050932 训练toolkit 预检容器 训练预检容器检测IB错误。 训练预检容器检测IB错误。 父主题: 资源池
训练中途卡死 问题现象1 检测每个节点日志是否有报错信息,某个节点报错但作业未退出导致整个训练作业卡死。 解决方案1 查看报错原因,解决报错。 问题现象2 作业卡在sync-batch-norm中或者训练速度变慢。pytorch如果开了sync-batch-norm,多机会慢,因
格”,通过训练部署模型,实现产品的质检。 物体检测 物体检测项目,是检测图片中物体的类别与位置。需要添加图片,用合适的框标注物体作为训练集,进行训练输出模型。适用于一张图片中要识别多个物体或者物体的计数等。可应用于园区人员穿戴规范检测和物品摆放的无人巡检。 预测分析 预测分析项目
已标注数据格式规范:图像分类 支持 可以导入未标注或已标注数据 已标注数据格式规范:图像分类 物体检测 支持 可以导入未标注或已标注数据 已标注数据格式规范:物体检测 支持 可以导入未标注或已标注数据 已标注数据格式规范:物体检测 图像分割 支持 可以导入未标注或已标注数据 已标注数据格式规范:图像分割
ModelArts Standard数据管理提供了一套高效便捷的管理和标注数据框架。支持图片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、自然语言处理、音视频分析等AI项目场景。 ModelArts Standard数据管
valid number is 0. 原因分析 该日志表示数据集中的有效样本量为0,可能有如下原因: 数据未标注。 标注的数据是不符合规格的(如目标检测算法要求标注为矩形框,但是提供数据标注为非矩形框)。 处理方法 请您检查数据是否已标注,或检查数据标注是否符合算法要求。 父主题: 预置算法运行故障
ModelArts自动学习与ModelArts PRO的区别 ModelArts自动学习,提供了AI初学者,零编码、零AI基础情况下,可使用自动学习功能,开发用于图像分类、物体检测、预测分析、文本分类、声音分类等场景的模型。 而ModelArts PRO是一款为企业级AI应用打造的专业开发套件。用户可根据预置工作流生
创建图像分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏选择“开发空间 > 自动学习”,进入自动学习页面。
创建预测分析项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
计算节点个数 默认为1。您可以根据您的实际情况选择,最大为5。 针对“物体检测”类型的标注作业,选择“主动学习”时,只支持识别和标注矩形框。 图1 启动智能标注(图像分类) 图2 启动智能标注(物体检测) 图3 启动智能标注(预标注) 完成参数设置后,单击“提交”,即可启动智能标注。
创建文本分类项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
数据集如何切分 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。 输入“训练集比例”,数值只能是0~1区间内的数。设置好“训练集比例”后,“验证集比例”自动填充。“训练集比例”加“验证集比例”等于1。
异比较大,可以使用fp32精度模式提升模型的精度(精度模式并不总是需要使用fp32,因为相对于fp16,fp32的性能较差。因此,通常只在检测到某个模型精度存在问题时,才会考虑是否使用fp32进行尝试)。使用fp32精度模式的配置文件如下: 配置文件: # config.ini [ascend_context]
数据标注 物体检测图片标注,一张图片是否可以添加多个标签? 在物体检测作业中上传已标注图片后,为什么部分图片显示未标注? 父主题: Standard自动学习
只有“图片”的数据集,且版本标注类型为“物体检测”和“图像分类”的数据集版本支持数据特征分析。 只有发布后的数据集支持数据特征分析。发布后的Default格式数据集版本支持数据特征分析。 数据特征分析的数据范围,不同类型的数据集,选取范围不同: 对于标注任务类型为“物体检测”的数据集版本,当已标注样
让零AI基础的业务开发者可快速完成模型的训练和部署。 ModelArts自动学习,为入门级用户提供AI零代码解决方案 支持图片分类、物体检测、预测分析、声音分类场景 自动执行模型开发、训练、调优和推理机器学习的端到端过程 根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型
只支持JPG、JPEG、PNG、BMP格式的图片。单张图片大小不能超过5MB,且单次上传的图片总大小不能超过8MB。 物体检测 支持两种格式: ModelArts PASCAL VOC 1.0 物体检测的简易模式要求用户将标注对象和标注文件存储在同一目录,并且一一对应,如标注对象文件名为“IMG_20180919_114745