检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
动学习物体检测项目后数据标注节点会报错。 图2 数据标注节点报错 步骤三:创建自动学习物体检测项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“自动学习”默认进入新版自动学习页面,选择物体检测项目,单击“创建项目”。 进入“创建物体检测”页面后,填写相关参数。
在ModelArts中物体检测标注时能否自定义标签? 可以通过修改数据集给标签添加自定义属性来设置一些自定义的属性。 图1 修改数据集 父主题: Standard数据准备
detection_classes 每个检测框的标签。 detection_boxes 每个检测框的四点坐标(y_min,x_min,y_max,x_max),如图2所示。 detection_scores 每个检测框的置信度。 图2 检测框的四点坐标示意图 由于“运行中”的在线
图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数量、名称,适合图片中有多个主体的场景,针对下图检测出图片包含树和汽车。 图2 物体检测 父主题: Standard自动学习
死。 检测规则 卡死检测主要是通过监控作业进程的状态和资源利用率来判定作业是否卡死。会启动一个进程来周期性地监控上述两个指标的变化情况。 进程状态:只要训练作业中存在进程IO有变化,进入下一个检测周期。如果在多个检测周期内,作业所有进程IO都没有变化,则进入资源利用率检测阶段。
训练物体检测模型 自动学习物体检测项目,在图片标注完成后,通过模型训练得到合适的模型版本。 操作步骤 在新版自动学习页面,单击项目名称进入运行总览页面,单击“数据标注”节点的“实例详情”进入数据标注页面,完成数据标注。 图1 完成数据标注 返回新版自动学习页面,单击数据标注节点的
单击“创建项目”,物体检测项目创建成功后页面自动跳转到“自动学习工作流”。 物体检测项目的工作流,将依次运行如下节点: 数据标注:对您的数据进行标注情况确认。 数据集版本发布:将已完成标注的数据进行版本发布。 数据校验:对您的数据集的数据进行校验,是否存在数据异常。 物体检测:将发布好的数据集版本进行训练,生成对应的模型。
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。物体的标签设计完成之后,基于设计好的标签准备该图片的数据,每种需识别出的标签,建议应
入门案例:快速创建一个物体检测的数据集 本节以准备训练物体检测模型的数据为例,介绍如何针对样例数据,进行数据分析、数据标注等操作,完成数据准备工作。在实际业务开发过程中,可以根据业务需求选择数据管理的一种或多种功能完成数据准备。此次操作分为以下流程: 准备工作 创建数据集 数据分析
章主要阐述ModelArts服务受入侵的检测响应能力、防抖动的能力、域名合理使用、内容安全检测等能力。 安全防护套件覆盖和使用堡垒机,增强入侵检测和防御能力 ModelArts服务部署主机层、应用层、网络层和数据层的安全防护套件。及时检测主机层、应用层、网络层和数据层的安全入侵行为。
如您将已标注好的图片上传至OBS桶,请按照如下规范上传。 物体检测数据集要求用户将标注对象和标注文件存储在同一目录,并且一一对应。例如标注对象文件名为“IMG_20180919_114745.jpg”,那么标注文件的文件名应为“IMG_20180919_114745.xml”。 物体检测的标注文件需要满足PASCAL
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
底层ecs相关的系统补丁修复 k8s的版本更新和漏洞修复 虚拟机OS的版本生命周期维护 ModelArts推理平台自身的安全合规性 容器应用服务加固 模型运行环境的版本更新和漏洞定期修复 客户侧 资源的授权,访问控制 保证应用的供应链安全,依赖和自身的安全性,安全扫描、审计和准入校验机制,保证制品源头的安全性
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
订阅算法物体检测YOLOv3_ResNet18(Ascend)训练失败报错label_map.pbtxt cannot be found 问题现象 使用订阅算法物体检测YOLOv3_ResNet18(Ascend) 进行训练作业,训练失败报错label_map.pbtxt cannot
镜像更新升级 ModelArts包含开发环境、训练管理、推理部署三个功能模块,三个模块采用统一的流程提供基础镜像。这些镜像会不定期更新升级,修复已知漏洞。 父主题: 安全
处理方法 在部署或升级在线服务时,选择更大内存规格的计算节点。 图3 选择计算节点规格 运行中服务出现告警时,需要分析是您的代码是否出现漏洞导致内存溢出、是否因为业务使用量太大需要更多的内存。如果因业务原因需要更多内存,请升级在线服务选择更大内存规格的计算节点。 父主题: 服务部署
Qwen-VL基于DevServer适配Pytorch NPU的推理指导(6.3.909) Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu
Qwen-VL基于DevServer适配PyTorch NPU的Finetune训练指导(6.3.912) Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。 本文档主要介绍如何利用训练框架PyTorch_npu
Lite池故障处理流程 对于ModelArts Lite资源池,每个节点会以DaemonSet方式部署node-agent组件,该组件会检测节点状态,并将检测结果写到K8S NodeCondtition中。同时,节点故障指标默认会上报到AOM,您可在AOM配置告警通知。 当发生节点异常时