检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练作业调测 使用SDK调测单机训练作业 使用SDK调测多机分布式训练作业 父主题: 训练作业
ork_type=Ascend-Powered-Engine。 Session初始化,与使用SDK调测单机训练作业中的1相同。 准备训练数据,与使用SDK调测单机训练作业中的2相同,唯一的不同在于obs_path参数是必选的。 准备训练脚本。 from modelarts.train_params
使用SDK调测单机训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改6和10中的framework_type参数值即可,例如:MindSpore框架,此处framework_
如果切换了Notebook的规格,那么只能在Notebook进行单机调测,不能进行分布式调测,也不能提交远程训练作业。 当前仅支持PyTorch和MindSpore AI框架,如果MindSpore要进行多机分布式训练调试,则每台机器上都必须有8张卡。 本文档提供的调测代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。
Standard使用流程 本章节旨在帮助您了解ModelArts Standard的基本使用方法,帮助您快速上手ModelArts服务。 面向熟悉代码编写和调测,熟悉常见AI引擎的开发者,ModelArts不仅提供了在线代码开发环境,还提供了从数据准备、模型训练、模型管理到模型部署上线的端到端开发流程(即AI全流程开发)。
以直接使用。 开发者可以通过浏览器入口以Notebook方式访问,也可以通过VSCode远程开发的模式直接接入到云上环境中完成迁移开发与调测,最终生成适配昇腾的推理应用。 当前支持以下两种迁移环境搭建方式: ModelArts Standard:在Notebook中,使用预置镜像进行。
ts训练作业及创建AI应用,并将其部署为在线服务。 ModelArts SDK使用限制 本地ModelArts SDK不支持进行训练作业调测、模型调试和在开发环境中部署本地服务进行调试,当前仅支持在开发环境Notebook中调试。 本地安装ModelArts SDK步骤 在本地安装ModelArts
I开发、探索、教学用户,提供更好云化AI开发体验。 ModelArts Standard Notebook云上云下,无缝协同 代码开发与调测。云化JupyterLab使用,本地IDE+ModelArts插件远程开发能力,贴近开发人员使用习惯 云上开发环境,包含AI计算资源,云上存储,预置AI引擎
遇到算子不支持的问题,您可以到华为云管理页面上提交工单来寻求帮助。 图片大Shape性能劣化严重怎么办? 在昇腾设备上,可能由于GPU内存墙导致在大shape下遇到性能问题。MindSporeLite提供了Flash Attention编译优化机制,您可以考虑升级最新版本的MindSporeLite
迁移评估:针对迁移可行性、工作量,以及可能的性能收益进行大致的预估。 环境准备:利用ModelArts提供的开发环境一键式准备好迁移、调测需要的运行环境与工具链。 模型适配:针对昇腾迁移模型必要的转换和改造。 模型准备,导出和保存确定格式的模型。 转换参数准备,准备模型业务相关的关键参数。
自定义镜像使用场景 在AI业务开发以及运行的过程中,一般都会有复杂的环境依赖需要进行调测并固化。面对开发中的开发环境的脆弱和多轨切换问题,在ModelArts的AI开发最佳实践中,通过容器镜像的方式将运行环境进行固化,以这种方式不仅能够进行依赖管理,而且可以方便的完成工作环境切换
集成在线服务API至生产环境中应用 针对已完成调测的API,可以将在线服务API集成至生产环境中应用。 前提条件 确保在线服务一直处于“运行中”状态,否则会导致生产环境应用不可用。 集成方式 ModelArts在线服务提供的API是一个标准的Restful API,可使用HTTP
合SFS和OBS存储,在ModelArts Standard的训练环境中开展单机单卡、单机多卡、多机多卡分布式训练。 面向熟悉代码编写和调测的AI工程师,同时了解SFS和OBS云服务 从 0 制作自定义镜像并用于训练(Pytorch+CPU/GPU) 本案例介绍如何从0开始制作镜像,并使用该镜像在ModelArts
n.py” 代码调测:在需要调测点打断点,然后单击“RUN > Start Debugging”。 代码运行:单击“RUN > Run Without Debugging”,运行结果如下: 图6 代码运行结果 步骤4:保存开发环境镜像 完成Notebook调测后,此时的Noteb
精度问题根因和表现种类很多,会导致问题定位较为复杂,一般还是需要GPU上充分稳定的网络(包含混合精度)再到NPU上排查精度问题。常见的精度调测手段,包含使用全精度FP32,或者关闭算子融合开关等,先进行排查。对于精度问题,系统工程人员需要对算法原理有较深入的理解,仅从工程角度分析有
创建多机多卡的分布式训练(DistributedDataParallel) 本章节介绍基于PyTorch引擎的多机多卡数据并行训练。并提供了分布式训练调测具体的代码适配操作过程和代码示例。同时还针对Resnet18在cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。
帮助用户零代码构建AI模型,详细介绍请参见使用ModelArts Standard自动学习实现垃圾分类。 面向AI工程师,熟悉代码编写和调测,您可以使用ModelArts Standard提供的在线代码开发环境,编写训练代码进行AI模型的开发。 如果您想了解如何在ModelArts
成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。在集成至生产环境之前,需要对此API进行调测,您可以使用以下方式向在线服务发起预测请求: 方式一:使用图形界面的软件进行预测(以Postman为例)。Windows系统建议使用Postman。
ModelArts支持在开发环境中开启MindInsight可视化工具。在开发环境中通过小数据集训练调试算法,主要目的是验证算法收敛性、检查是否有训练过程中的问题,方便用户调测。 MindInsight能可视化展现出训练过程中的标量、图像、计算图以及模型超参等信息,同时提供训练看板、模型溯源、数据溯源、性能调试等功
训练作业 创建训练作业 训练作业调测 查询训练作业列表 查询训练作业详情 更新训练作业描述 删除训练作业 终止训练作业 查询训练日志 查询训练作业的运行指标 父主题: 训练管理