检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
est文件中也可以只有原始文件信息,没有标注信息,如生成的未标注的数据集。 Manifest文件使用UTF-8编码,Manifest处理程序需具备UTF-8处理能力。 Manifest文件中文本分类的source数值可以包含中文,其他字段不建议用中文。 Manifest文件可以由
如果没有自动重启,创建一直失败,请确认是否是自定义镜像的问题。 解决方案 排查是否是自定义镜像的问题。 自定义镜像构建完成,在ModelArts镜像管理注册时,“架构”和“类型”需要和源镜像保持一致。 图2 注册镜像 父主题: 实例故障
如何在训练中加载部分训练好的参数? 在训练作业时,需要从预训练的模型中加载部分参数,初始化当前模型。请您通过如下方式加载: 通过如下代码,您可以查看所有的参数。 from moxing.tensorflow.utils.hyper_param_flags import mox_flags
集比例”自动填充。“训练集比例”加“验证集比例”等于1。 说明: 为确保训练模型的精度,建议将训练集比例设置为0.8或者0.9。 “训练集比例”即用于训练模型的样本数据比例;“验证集比例”即用于验证模型的样本数据比例。“训练验证比例”会影响训练模板的性能。 “描述” 针对当前发布的数据集版本的描述信息。
Files按钮,打开文件上传窗口,选择左侧的进入远端文件上传界面。 图1 上传文件图标 图2 进入远端文件上传界面 输入有效的远端文件URL后,系统会自动识别上传文件名称,单击“上传”,开始上传文件。 图3 输入有效的远端文件URL 图4 远端文件上传成功 异常处理 远端文件上传失败。可能是
Profiling数据采集 在train.py的main()函数Step迭代处添加配置,添加位置如下图所示: 此处需要注意的是prof.step()需要加到dataloder迭代循环的内部以保证采集单个Step迭代的Profiling数据。 更多信息,请参见Ascend PyTorch
需排查APIG(API网关)和模型。 处理方法 优先排查APIG(API网关)是否是通的,可以在本地使用curl命令排查,命令行:curl -kv {预测地址}。如返回Timeout则需排查本地防火墙,代理和网络配置。 检查模型是否启动成功或者模型处理单个消息的时长。因APIG(
是 String 下载目标的本地文件夹,下载的本地目标文件夹后缀必须以“/”结尾。 表2 失败响应参数说明 参数 参数类型 描述 error_code String 调用失败时的错误码。 调用成功时无此字段。 error_msg String 调用失败时的错误信息。 调用成功时无此字段。
SD WebUI推理性能测试 以下性能测试数据仅供参考。 开启Flash Attention 生成1280x1280图片,使用Ascend: 1* ascend-snt9b(64GB),约耗时7.5秒。 图1 生成图片耗时(1) 生成1280x1280图片,使用Ascend: 1*
Files按钮,打开文件上传窗口,选择左侧的进入GitHub开源仓库Clone界面。 图1 上传文件图标 图2 进入GitHub开源仓库Clone界面 输入有效的GitHub开源仓库地址后会展示该仓库下的文件及文件夹,说明用户输入了有效的仓库地址,同时给出该仓库下所有的分支供选择,选择完成后单击“克隆”开始Clone仓库。
String 本地需要上传的文件夹路径。 当上传的文件夹下内容为空或者该文件夹下包含多个文件夹且有文件夹下内容有空时,OBS对应路径下不产生该空文件夹。 dst_obs_dir 是 String 上传的目标OBS桶地址,必须以“obs://”作为前缀,上传的目标文件夹后缀必须以“/”结尾。
module name 'unidecode'” 问题现象 从mindspore开源gitee中master分支下载的tacotron2模型,修改配置文件后上传ModelArts准备训练,日志报错提示:No module name 'unidecode'。 原因分析 requirements
在ModelArts的算法管理中已准备好待发布的算法。创建算法的相关操作请参见创建算法。 创建算法时,算法代码存储的OBS桶内不能存在文件和文件夹重名的情况,这样算法可能会发布失败。如果算法发布成功,则代码开放会失败。 发布算法 进入AI Gallery首页,选择“资产集市 > 算法”,进入算法页面。 单击“发
标注图像分类数据 由于模型训练过程需要大量有标签的图片数据,因此在模型训练之前需对没有标签的图片添加标签。通过ModelArts您可对图片进行一键式批量添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 请确保数据集中已标注的图片不低于100张,否
U进行训练推理的案例指导,涵盖了LLM大语言模型、AIGC文生图、数字人等主流应用场景。您可单击链接,即可跳转至相应文档查看详细指导。 LLM大语言模型 主流开源大模型基于Server适配PyTorch NPU推理指导 主流开源大模型基于Server适配ModelLink PyTorch
下载的源OBS文件夹,必须以“obs://”作为前缀,文件夹后缀必须以"/"结尾。当下载的文件夹下有文件夹且内容为空时,对应路径下不产生对应空文件夹。 dst_local_dir 是 String 下载的目标本地文件夹,下载的目标本地文件夹后缀必须以“/”结尾。 表2 失败响应参数说明
signer 原因分析 OBS限制单次上传文件大小为5GB,TensorFlow保存summary可能是本地缓存,在每次触发flush时将该summary文件覆盖OBS上的原文件。当超过5GB后,由于达到了OBS单次导入文件大小的上限,导致无法继续写入。 处理方法 如果在运行训练作业的过程中出现该问题,建议处理方法如下:
导致训练作业失败: pandas.errors.ParserError: Error tokenizing data. C error: Expected 4 field 原因分析 csv中文件的每一行的列数不相等。 处理方法 可以使用以下方法处理: 校验csv文件,将多出字段的行删除。
源池。 如果磁盘空间不够,可以尝试重试,使实例调度到其他节点。如果单实例仍磁盘空间不足,请联系系统管理员,更换合适的规格。 如果是大模型导入的模型部署服务,请确保专属资源池磁盘空间大于1T(1000GB)。 父主题: 服务部署
Step2 准备训练文件和推理文件:编写训练与推理代码。 Step3 创建OBS桶并上传文件:创建OBS桶和文件夹,并将数据集和训练脚本,推理脚本,推理配置文件上传到OBS中。 Step4 创建训练作业:进行模型训练。 Step5 推理部署:训练结束后,将生成的模型导入ModelArt