检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面实时预测Tab页,单击“模型部署”,开始部署模型。 图1 模型部署 模型部署完成后,单击“发起预测”,在系统弹窗中填写要预测的“样本id”和“模型特征”对应的数值,然后单击“预测”,就会有系统弹窗弹出,显示预测结果。 注意:样
图1 履约记录 在弹出的对话框展示履约记录的内容。 图2 查看履约记录详情 作为合约的参与一方,可以查看合约从创建、签署以及合约执行(文件交换),以及文件解密的整个过程。 合约双方都可以查看整个合约的履约过程。 父主题: 可信数据交换
的本地路径。 主机路径 挂载使用的容器外部的路径,用于服务容器内和外部数据交互。用户只有在工作路径中放置数据集等文件,服务才能读取到;服务运行作业生成的结果、日志文件也会输出到工作目录,供用户查看、获取。
76 123400991,80,36 123400990,39,63 执行如下SQL语句,将csv文件内的数据导入创建的数据表。 LOAD DATA INFILE 'csv数据文件名' INTO TABLE 表名 或者执行如下的插入语句: Tax表: insert into tax
访问截止时间:设置访问的时间限制,超过访问时间后,对方的访问权限将被收回,交换至对方的加密文件将被删除。 访问方式:基于TICS平台进行下载。 访问次数:用户可以访问次数的最大限制;超过访问次数,用户将无法访问作业文件。如果不填写,用户在访问截至时间前无限次访问。 图2 设置使用的字段及访问的需求
管理密钥 密钥用于对加密的数据文件进行AES加解密。在多方安全计算作业场景,当SQL语句使用系统函数进行AES加解密时需要使用密钥。 约束限制 上传密钥文件需要以.key为后缀结尾。 上传密钥文件大小不超过256B。 上传密钥文本为base64编码之后的密钥,长度小于1000。 上传密钥
被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算节点 数据参与方使用数据源计算节点模块实现自主可控的数据源注册、隐私策略(脱敏、加密)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
空间回滚 约束限制 只有空间升级失败或者回滚失败,才能进行回滚。 删除中的空间无法进行空间回滚。 空间回滚的过程中会导致空间的不可用。 回滚过程的相关操作记录将会保存。 由于1.20.0版本架构变化,如果需要跨1.20.0版本回滚,则需要联系客服或技术支持人员,先刷新后台数据库,再通过TICS控制台进行空间回滚。
String csv文件分隔符 is_header_exist Boolean 数据文件是否包含表头 data_file_path String 数据文件地址 id_file_path String id文件地址 config_file_path String 配置文件地址 auto_generate_data
中,提取计算节点密钥(.p12格式) 并导入上传。 CA证书(.jks):请从通知管理下载的空间配置的压缩包中,提取CA证书(.jks格式) 并导入上传。 证书密码:请从通知管理下载的空间配置的压缩包中,提取空间信息(.json) 并导入上传。 图4 规格参数 切换计算节点状态
可信联邦学习”,打开可信联邦学习作业页面。 在“联邦预测”页面,选择批量预测的Tab页,找到待开发的作业,单击“开发”。 图1 开发作业 在弹出的对话框中编辑“选择模型”。只允许选择模型,其它作业参数暂时不支持修改。 单击保存。 父主题: 批量预测
执行恶意脚本 发起方执行恶意脚本后,由于安全沙箱确保每个横向联邦作业都是隔离的,当某个作业想去访问或篡改其他作业相关的文件时,无法找到作业执行结果文件,因此脚本执行失败、无法篡改,从而实现安全防护。 图3 恶意脚本执行结果 父主题: 可信联邦学习作业
可以单独设置隐私策略,并在发布到空间侧后对其他参与方生效,限制敏感信息的使用。 数据预处理使用场景:训练机器学习模型前,可通过转换函数将特征数据转换成更加适合算法模型的特征数据。 父主题: 管理数据
csv文件分隔符 is_header_exist 是 Boolean 数据文件是否包含表头 data_file_path 是 String 数据文件地址 id_file_path 否 String id文件地址 config_file_path 否 String 配置文件地址 auto_generate_data
横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行联邦机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的
会造成训练资源的浪费,过高的iv值又过于突出可能会过度影响训练出来的模型。 例如这里大数据厂商提供的f4特征iv值是0,说明这个特征对于标签的识别没有区分度,可以不选用;而f0、f2特征的iv值中等,适合作为模型的训练特征。 根据计算得出的iv值,企业A调整了训练使用的特征,没有
联邦预测作业管理 查询联邦预测作业列表 查询训练作业下的成功模型 父主题: 计算节点API
多方协同过程中隐私信息交互(SQL JOIN数据碰撞、可信联邦学习模型参数)的加密保护; 支持安全多方计算,如基于隐私集合求交PSI(Private Set Intersection)技术的多方样本对齐、 基于差分隐私、加法同态、秘密共享等技术的训练模型保护; 可插件化的对接区块链存储,实现多方数据
隐私求交作业执行完成后,企业A可以通过单击“历史作业 > 查看结果”看到隐私求交作业的运行结果,包括交集的大小和交集文件的路径。 打开obs到指定目录下查看,可以看到有两个结果文件,其中一个是交集记录的序号alignedIds.csv,另一个是交集记录的id alignedOriginalIds