检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--resume-download meta-llama/Llama-2-70b-chat-hf --local-dir <模型下载路径> 如果要下载指定版本的模型文件,则命令如下: huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf
Lite使用中遇到问题时,例如模型转换失败、训练后量化转换失败、模型推理失败、模型推理精度不理想、模型推理性能不理想、使用Visual Studio报错、使用Xcode构建APP报错等,您可以先查看日志信息进行定位分析。 多数场景下的问题可以通过日志报错信息直接定位。如果日志的信息不能定位问题,您可以
数据集描述,默认为空,描述不能包含^!<>=&"'等特殊字符,长度为0-256。 import_annotations 否 Boolean 是否自动导入输入目录下的标注信息,支持物体检测、图像分类、文本分类。可选值如下: true:导入输入目录下的标注信息(默认值) false:不导入输入目录下的标注信息
训练作业运行失败排查指导 问题现象 训练作业的“状态”出现“运行失败”的现象。 原因分析及处理方法 查看训练作业的“日志”,出现报错“MoxFileNotExistsException(resp, 'file or directory or bucket not found.')”。
ts/train_url_0" train_url = args.train_url # 判断输出路径中是否有模型文件。如果无文件则默认从头训练,如果有模型文件,则加载epoch值最大的ckpt文件当做预训练模型。 if os.listdir(train_url): print('>
当使用ModelArts不支持的AI框架构建模型时,可通过构建的自定义镜像导入ModelArts进行训练或推理。您可以通过容器镜像服务(Software Repository for Container,简称SWR)制作并上传自定义镜像,然后再通过容器镜像服务导入ModelArts。SWR的更多信息请参见《容器镜像服务用户指南》。
/tree/v0.9.0。 量化脚本convert_checkpoint.py存放在TensorRT-LLM/examples路径对应的模型文件夹下,例如:llama模型对应量化脚本的路径是examples/llama/convert_checkpoint.py。 执行convert_checkpoint
Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的音频,至少有2种以上的分类,每种分类的音频数据数不少20条。 创建数据集 数据准备完成后,需要创建相应项目支持的类
--resume-download meta-llama/Llama-2-70b-chat-hf --local-dir <模型下载路径> 如果要下载指定版本的模型文件,则命令如下: huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf
--resume-download meta-llama/Llama-2-70b-chat-hf --local-dir <模型下载路径> 如果要下载指定版本的模型文件,则命令如下: huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf
功能咨询 是否支持图像分割任务的训练? 本地导入的算法有哪些格式要求? 欠拟合的解决方法有哪些? 旧版训练迁移至新版训练需要注意哪些问题? ModelArts训练好后的模型如何获取? AI引擎Scikit_Learn0.18.1的运行环境怎么设置? TPE算法优化的超参数必须是分类特征(categorical
如果您使用的是自定义镜像导入的模型,请增大自定义镜像中所使用的web server的keep-alive的参数值,尽量避免由服务端发起关闭连接。如您使用的Gunicorn来作为web server,可以通过Gunicorn命令的--keep-alive参数来设置该值。其他方式导入的模型,服务内部已做处理。
创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)存储输入输出数据、运行代码和模型文件,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。
ts/train_url_0" train_url = args.train_url # 判断输出路径中是否有模型文件。如果无文件则默认从头训练,如果有模型文件,则加载epoch值最大的ckpt文件当做预训练模型。 if os.listdir(train_url): print('>
创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)存储输入输出数据、运行代码和模型文件,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先创建一个OBS桶,然后在OBS桶中创建文件夹用于存放数据。
Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的文本,至少有2种以上的分类,每种分类样本数据数不少20行。 创建数据集 数据准备完成后,需要创建相应项目支持的类型
预置框架启动文件的启动流程说明 ModelArts Standard训练服务预置了多种AI框架,并对不同的框架提供了针对性适配,用户在使用这些预置框架进行模型训练时,训练的启动命令也需要做相应适配。 本章节详细介绍基于不同的预置框架创建训练作业时,如何修改训练的启动文件。 Asc
过5MB。 解决方案: 方法1:使用导入功能。将图片上传至OBS任意目录,通过“从OBS目录导入”方式导入到已有数据集。 方法2:使用同步数据源功能。将图片上传到数据集输入目录下(或者其子目录),单击数据集详情页中的“同步数据源”将新增图片导入。需注意的是,同步数据源同时也会将O
注册伙伴 仅当暂未注册伙伴的用户可以注册伙伴。 在“AI Gallery”页面中,单击右上角“我的Gallery > 我的主页”进入个人中心页面。 左侧菜单栏选择“解决方案”进入解决方案列表页,单击右上方“发布”进入合作伙伴申请页面。 如果已经是伙伴用户,则会进入发布解决方案页面。
下载代码目录失败 问题现象 训练作业运行时下载失败,出现如下报错,请参见图1: ERROR:modelarts-downloader.py: Get object key failed: 'Contents' 图1 获取内容失败 原因分析 在创建训练作业时指定的代码目录不存在导致训练失败。