检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
供了包括盘古大模型在内的多种大模型服务,支持大模型的定制开发,并提供覆盖全生命周期的大模型工具链。 盘古大模型为开发者提供了一种简单高效的方式来开发和部署大模型。通过数据工程、模型开发和应用开发等功能套件,帮助开发者充分发挥盘古大模型的强大功能。企业可根据自身需求选择合适的大模型相关服务和产品,轻松构建自己的模型。
型)或纵向(不同训练数据训练的多个模型版本)对比来判断训练过程是否出现了问题。 人工评测:您可以采用人工评测的方式,参照目标任务构造评测集,通过横向或纵向评估评测集的方式来验证模型效果。 父主题: 典型训练问题和优化策略
者减小学习率的方式来解决。 图3 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss保持平缓且保持高位不下降的原因可能是由于目标任务的难度较大,或者模型的学习率设置得过小,导致模型的收敛速度太慢,无法达到最优解。您可以尝试增大训练轮数或者增大学习率的方式来解决。 图4
更高质量的数据,可以通过CoT(思维链)、self-instruct等方式批量调用大模型,来获取满足您要求的数据。 人工标注:如果以上两种方案均无法满足您的要求,您也可以使用“数据标注”功能,采用人工标注方式来获取数据。 父主题: 典型训练问题和优化策略
用于支持上下文记忆的对话、搜索增强等场景。 Memory(记忆)支持多种不同的存储方式和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。
用于支持上下文记忆的对话、搜索增强等场景。 Memory(记忆)支持多种不同的存储方式和功能。 Cache缓存:是一种临时存储数据的方法,它可以提高数据的访问速度和效率。缓存可以根据不同的存储方式进行初始化、更新、查找和清理操作。缓存还可以支持语义匹配和查询,通过向量和相似度的计算,实现对数据的语义理解和检索。
配置项说明及获取方式 类型 资源 是否必选 相关配置项 说明 配置项值获取方式 IAM认证 - 是 sdk.iam.url Token认证调用URL。 示例:POST https://{endpoint}/v3/auth/tokens {endpoint}获取方式详见《API参考》“使用前必读
"role": "system", "content": "请用幼儿园老师的口吻回答问题,注意语气温和亲切,通过提问、引导、赞美等方式,激发学生的思维和想象力。" }, { "role": "user", "content":
中,可以通过以下方式扩展自定义的加解密组件: 在一个module(yourmodule)中自定义一个解密方法decrypt_func(key_id, cipher),要求可以通过`from yourmodule import decrypt_func`这样的方式使用该方法。 在配置文件中配置`sdk
/etc/hccn.conf,确保有如下回显网卡信息,则配置完成。 配置NFS网盘服务。 大模型采用镜像+模型分开的方式部署时,需要有一个节点来提供NFS网盘服务,创建部署时通过NFS挂载的方式访问模型。 父主题: 部署为边缘服务
Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统和执行系统。 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执
量计费,不足1K Tokens则小数点保留至后四位计算。 计费模式 盘古大模型的计费模式见表1。 表1 计费模式表 计费项 计费模式 付费方式 计费周期 模型订阅服务 包周期计费 预付费 按照订单的购买周期结算。 按订单的购买周期计费。 推理服务 包周期计费 预付费 按照订单的购买周期结算。
Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统、执行系统: 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Agent结合记忆模块中相关的信息以获取最优化任务解决策略。 任务执
用于调整模型对新令牌(Token)的处理方式。即如果一个Token已经在之前的文本出现过,那么模型在生成这个Token时会受到一定的惩罚。当值为正数时,模型会更倾向于生成新的Token,即更倾向于谈论新的话题。 词汇重复度控制 用于调整模型对频繁出现的Token的处理方式。即如果一个Token在
addTool(new AddTool()); agent.addTool(new SearchTool()); } 静态工具和动态工具的注册方式相同,通过addTool接口进行注册。 通过setMaxIterations可以设置最大迭代次数,控制Agent子规划的最大迭代步数,防止无限制的迭代或出现死循环情况。
用于调整模型对新令牌(Token)的处理方式。即如果一个Token已经在之前的文本出现过,那么模型在生成这个Token时会受到一定的惩罚。当值为正数时,模型会更倾向于生成新的Token,即更倾向于谈论新的话题。 词汇重复度控制 用于调整模型对频繁出现的Token的处理方式。即如果一个Token在
数据清洗:您可以通过一些简单基础的规则逻辑来过滤异常数据,比如,去空、去重、字符串过滤等。同时,您也可以采用PPL(困惑度),或训练一个二分类模型等方式过滤脏数据。 数据增强:您可以通过一些规则来提升数据的多样性,比如:同义词替换、语法结构修改、标点符号替换等,保证数据的多样性。 基于大模
一个key。 恰当的表述 可以尝试从英语的逻辑去设计提示词。 最好是主谓宾结构完整的句子,少用缩写和特殊句式。 应使用常见的词汇和语言表达方式,避免使用生僻单词和复杂的句式,防止机器理解偏差。 多用肯定句,少用否定句,比如“你不能A -> 你必须保证^A”,“你不能生成重复的问题
最大口令限制 用于控制聊天回复的长度和质量。 话题重复度配置 用于控制生成文本中的重复程度。 词汇重复度控制 用于调整模型对频繁出现的Token的处理方式。 历史对话保留轮数 选择“多轮对话”功能时具备此参数,表示系统能够记忆的历史对话数。 父主题: 调用盘古大模型
应工具,从而实现对应的功能。 AI助手具备以下核心功能: 大模型调用能力:AI助手可以根据特定的指令调用NLP大模型,以改变AI助手的回复方式,使其更好地响应用户的需求。例如,让AI助手表现得更加友好、专业,或者更加幽默。 多工具混合调用:AI助手可以集成不同功能的工具来解决问题