检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
贝叶斯优化的参数说明 参数 说明 取值参考 num_samples 搜索尝试的超参组数 int,一般在10-20之间,值越大,搜索时间越长,效果越好 kind 采集函数类型 string,默认为'ucb',可能取值还有'ei'、'poi',一般不建议用户修改 kappa 采集函数ucb的调节参数,可理解为上置信边界
训练完成后,您可以在预测分析节点中单击查看训练详情,如“标签列”和“标签列数据类型”、“准确率”、“评估结果”等。 该示例为二分类的离散型数值,评估效果参数说明请参见表1。 不同类型标签列数据产生的评估结果说明请参见评估结果说明。 图1 模型评估报告 同一个自动学习项目可以训练多次,每次训
、“训练日志”和“指标效果”。 单击操作列的“更多 > 删除任务”,可以删除微调任务,但是微调获得的新模型不会被删除。 查看训练效果 启动模型微调任务后,在微调大师列表单击操作列的“任务详情”,在弹窗中选择“指标效果”页签,可以查看训练效果。 表2 训练效果的指标介绍 指标名称 指标说明
="force" 迁移后应用出图效果相比GPU无法对齐怎么办? 扩散模型在噪音和随机数上的生成,本身就有一定的随机性,GPU和NPU(Ascend)硬件由于存在一定细小的差别,很难确保完全一致,较难达成生成图片100%匹配,建议通过盲测的方式对效果进行验证。 模型精度有问题怎么办?
email_status Integer 团队标注成员任务邮件通知状态。可选值如下: 0:表示未发送过 1:表示邮箱格式错误 2:表示邮箱地址不可达, 3:表示发送成功 last_notify_time Long 团队标注成员任务邮件最近一次通知时间戳。 pass_rate Double 团队标注成员任务验收审核通过率。
再落入自己的分类中。 由于一般新训练模型准确率都会从很低的值开始慢慢上升,但是Fine Tune能够在比较少的迭代次数之后得到一个比较好的效果。Fine Tune的好处在于不用完全重新训练模型,从而提高效率,在数据量不是很大的情况下,Fine Tune会是一个比较好的选择。 moxing
据和模型结果进行多轮的实验迭代。算法工程师会根据数据特征以及数据的标签做多样化的数据处理以及多种模型优化,以获得在已有的数据集上更好的模型效果。传统的模型交付会直接在实验迭代结束后以输出的模型为终点。当应用上线后,随着时间的推移,会出现模型漂移的问题。新的数据和新的特征在已有的模
其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。 降低正则化约束。 正则化约束是为了防止模型过拟合,如果模型压根不存在过拟合而是欠拟合了,那么就考虑是否降低正则化参数λ或者直接去除正则化项。
载运行状态的整体情况,并设置监控告警。 CES FullAccess 可选 SMN消息服务 授予子账号使用SMN消息服务的权限。SMN消息通知服务配合CES监控告警功能一起使用。 SMN FullAccess 可选 VPC虚拟私有云 子账号在创建ModelArts的专属资源池过程
在HTTP的URL输入框中输入Prometheus的IP地址和端口号,单击Save&Test: 图2 IP地址和端口号 至此,指标监控方案安装完成。指标监控效果展示如下: 图3 指标监控效果 这里使用的是Grafana最基本的功能,如有更高级的诉求,可参考Grafana的官方文档。 父主题: 监控Lite Server资源
自动补充健康的计算节点至专属资源池。(该功能即将上线) 容错检查详细介绍请参考: 开启容错检查 检测项目与执行条件 触发容错环境检测达到的效果 环境预检查通过后,如果发生硬件故障会导致用户业务中断。您可以在训练中补充reload ckpt的代码逻辑,使能读取训练中断前保存的预训练模型。指导请参考设置断点续训练。
、启动时间、运行时长或标签等,过滤出相应的工作流。 图1 属性类型 单击搜索框右侧的按钮,可设置Workflow列表页需要展示的内容和展示效果。 表格内容折行:默认为关闭状态。启用此功能可以让Workflow列表页中的内容在显示时自动换行。禁用此功能可截断文本,Workflow列表页中仅显示部分内容。
所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”
与云监控的关系 ModelArts使用云监控服务(Cloud Eye Service, 简称CES)监控在线服务和对应模型负载,执行自动实时监控、告警和通知操作。CES的更多信息请参见《云监控服务用户指南》。 与云审计的关系 ModelArts使用云审计服务(Cloud Trace Servi
与云监控的关系 ModelArts使用云监控服务(Cloud Eye Service, 简称CES)监控在线服务和对应模型负载,执行自动实时监控、告警和通知操作。CES的更多信息请参见《云监控服务用户指南》。 与云审计的关系 ModelArts使用云审计服务(Cloud Trace Servi
节点在替换中。替换成功后,节点列表中会显示新的节点名称。 替换最长时间为24小时,超时后仍然未找到合适的资源,状态会变为“失败”。可将鼠标悬浮在图标上,查看具体失败原因。 每天累计替换的次数不超过资源池节点总数的20%,同时替换的节点数不超过资源池节点总数的5%。 替换节点时需确保有空闲节点资源,否则替换可能失败。
所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基
用Grafana可视化工具来查看与分析监控指标。Grafana支持灵活而又复杂多样的监控视图和模板,为用户提供基于网页仪表面板的可视化监控效果,使用户更加直观地查看到实时资源使用情况。 将Grafana的数据源配置完成后,就可以通过Grafana查看AOM保存的所有ModelArts
所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1:F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本
所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。 f1 F1值 F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基