检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 task_id 是 String 训练作业的任务名称。可从训练作业详情中的status.tasks字段中获取。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 name 否 String 镜像名
创建训练作业 创建训练作业时提示“对象目录大小/数量超过限制”,如何解决? 训练环境中不同规格资源“/cache”目录的大小 训练作业的“/cache”目录是否安全? 训练作业一直在等待中(排队)? 创建训练作业时,超参目录为什么有的是/work有的是/ma-user? 在Mod
训练作业创建失败报错: 准备阶段超时。可能原因是跨区域算法同步或者创建共享存储超时 训练作业已排队,正在等待资源分配 训练作业排队失败 训练作业开始运行 训练作业运行成功 训练作业运行失败 训练作业被抢占 系统检测到您的作业疑似卡死,请及时前往作业详情界面查看并处理 训练作业已重启
分布式训练功能介绍 ModelArts提供了如下能力: 丰富的官方预置镜像,满足用户的需求。 支持基于预置镜像自定义制作专属开发环境,并保存使用。 丰富的教程,帮助用户快速适配分布式训练,使用分布式训练极大减少训练时间。 分布式训练调测的能力,可在PyCharm/VSCode/J
原因:Moxing在进行文件复制时,未找到train_data_obs目录。 处理建议:修改train_data_obs目录为正确地址,重新启动训练作业。 另外在Moxing下载OBS对象过程中,不要删除相应OBS目录下的对象,否则Moxing在下载到被删除的对象时会下载失败。 查看训练作业的“日志”,出现报错“CUDA
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 在Notebook中修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参
A/training/,训练代码会被自动下载至${MA_JOB_DIR}/training/。 假设训练代码的OBS目录为obs://bucket-A/XXX/{training-project}/,“{training-project}”是存放训练代码的文件夹名称。训练时会自动
训练作业训练失败报错:TypeError: unhashable type: ‘list’ 问题现象 使用订阅算法图像分类-EfficientNetB4进行训练报错:TypeError: unhashable type: ‘list’。 原因分析 可能由于使用了多标签分类导致(即一个图片用了1个以上的标签)。
模型训练 创建图像分类自动学习项目并完成图片标注,训练按钮显示灰色,无法开始训练? 自动学习项目中,如何进行增量训练? 自动学习训练后的模型是否可以下载? 自动学习为什么训练失败? 自动学习模型训练图片异常? 自动学习使用子账号单击开始训练出现错误Modelarts.0010 自
training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 task_id 是 String 训练作业的任务名称。可从训练作业详情中的status.tasks字段中获取。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 Content-Type
训练模型时引用依赖包,如何创建训练作业? ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip install
{training_job_id}/events 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。
删除训练作业参数 功能介绍 删除训练作业参数。 URI DELETE /v1/{project_id}/training-job-configs/{config_name} 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String
String 训练作业的输出文件OBS路径URL,默认为空,如“/usr/train/”。 log_url 否 String 训练作业的日志OBS输出路径URL,默认为空。如:“/usr/train/”。 user_image_url 否 String 自定义镜像训练作业的自定义镜像的SWR-URL。如:“100
训练作业的启动文件如何获取训练作业中的参数? 训练作业参数有两种来源,包括后台自动生成的参数和用户手动输入的参数。具体获取方式如下: 创建训练作业时,“输入”支持配置训练的输入参数名称(一般设置为“data_url”),以及输入数据的存储位置,“输出”支持配置训练的输出参数名称(
训练作业的“/cache”目录是否安全? ModelArts训练作业的程序运行在容器中,容器挂载的目录地址是唯一的,只有运行时的容器能访问到。因此训练作业的“/cache”是安全的。 父主题: 创建训练作业
当对创建的训练作业不满意时,您可以单击操作列的重建,重新创建训练作业。在重创训练作业页面,会自动填入上一次训练作业设置的参数,您仅需在原来的基础上进行修改即可重新创建训练作业。 停止训练作业 在训练作业列表中,针对“创建中”、“等待中”、“运行中”的训练作业,您可以单击“操作”列的“终止”,停止正在运行中的训练作业。