检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh
训练最后一个epoch卡死 问题现象 通过日志查看数据切分是否对齐,若未对齐,容易导致部分进程完成训练退出,而部分训练进程因未收到其他进程反馈卡死,如下图同一时间有的进程在epoch48,而有的进程在epoch49。 解决方案 对齐数据。 父主题: 训练作业卡死
训练作业性能问题 训练作业性能降低 父主题: 训练作业
Integer 训练作业worker的个数。 data_url String 训练作业的数据集。 train_url String 训练作业输出文件OBS路径。 log_url String 训练作业的日志OBS输出路径URL,默认为空。如:“/usr/train/”。 dataset_version_id
编写训练代码 训练模型时引用依赖包,如何创建训练作业? 训练作业常用文件路径是什么? 如何安装C++的依赖库? 训练作业中如何判断文件夹是否复制完毕? 如何在训练中加载部分训练好的参数? 训练作业的启动文件如何获取训练作业中的参数? 训练作业中使用os.system('cd xxx')无法进入相应的文件夹?
模型训练结束后,训练模型以及相关输出信息需保存在OBS路径。“输出”数据默认配置为模型输出,代码参数为“train_url”,也支持用户根据1的算法代码自定义输出路径参数。 在创建训练作业时,填写输入路径和输出路径。 训练输入选择对应的OBS路径或者数据集路径,训练输出选择对应的OBS路径。
训练作业性能降低 问题现象 使用ModelArts平台训练算法训练耗时增加。 原因分析 可能存在如下原因: 平台上的代码经过修改优化、训练参数有过变更。 训练的GPU硬件工作出现异常。 处理方法 请您对作业代码进行排查分析,确认是否对训练代码和参数进行过修改。 检查资源分配情况(
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中,具体参考代码上传至OBS和使用Notebook将OBS数据导入SFS Turbo。 Step1 在Notebook中修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b
训练作业 OBS操作相关故障 云上迁移适配故障 硬盘限制故障 外网访问限制 权限问题 GPU相关问题 业务代码问题 预置算法运行故障 训练作业卡死 训练作业运行失败 专属资源池创建训练作业 训练作业性能问题 Ascend相关问题
InternVL2基于DevServer适配PyTorch NPU训练指导(6.3.909) MiniCPM-V2.6基于DevServer适配PyTorch NPU训练指导(6.3.909) Qwen-VL基于DevServer适配Pytorch NPU的Finetune训练指导(6.3.909) Qwen-
node_count Integer 训练作业选择的资源副本数。 pool_id String 训练作业选择的资源池ID。 flavor_detail FlavorDetail object 训练作业、算法的规格信息(该字段只有公共资源池存在)。 表40 FlavorDetail 参数 参数类型 描述
删除训练作业版本 功能介绍 删除训练作业一个版本。 此接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。 URI DELETE /v1/{project_id}/training-jobs/{job_id}/versions/{version_id} 参数说明如表1所示。
调用查询训练作业详情接口使用刚创建的训练作业返回的id查询训练作业状态。 调用查询训练作业指定任务的日志(OBS链接)接口获取训练作业日志的对应的obs路径。 调用查询训练作业指定任务的运行指标接口查看训练作业的运行指标详情。 当训练作业使用完成或不再需要时,调用删除训练作业接口删除训练作业。 前提条件 已获
获取训练作业支持的公共规格 功能介绍 获取训练作业支持的公共规格。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/training-job-flavors
训练模型时引用依赖包,如何创建训练作业? ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip install
更新训练作业描述 功能介绍 更新训练作业的描述。 URI PUT /v1/{project_id}/training-jobs/{job_id} 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 启动SD1.5 LoRA训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh diffusers_lora_train
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 训练前需要修改数据集路径、模型路径。数据集路径格式为/datasets/pokemon-dataset/image_0
LoRA训练 本章节介绍SDXL&SD 1.5模型的LoRA训练过程。LoRA训练是指在已经训练好的模型基础上,使用新的数据集进行LoRA微调以优化模型性能的过程。 训练前需要修改数据集路径、模型路径。脚本里写到datasets路径即可。 run_lora_sdxl中的vae路径要准确写到sdxl_vae
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh