检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用“能力调测”调用科学计算大模型 能力调测功能支持用户调用预置或训练后的科学计算大模型。使用该功能前,请完成模型的部署操作,步骤详见创建科学计算大模型部署任务。
使用API调用科学计算大模型 预置模型或训练后的模型部署成功后,可以使用API调用科学计算大模型。 获取调用路径 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 获取调用路径。 在左侧导航栏中选择“模型开发 > 模型部署”。
目录下有多个数据文件时,需要通过命名的方式指定数据是训练数据集、验证数据集还是测试数据集。训练数据名称需包含train字样,如train01.csv;验证数据名称需包含eval字样;测试数据名称需包含test字样。
由于数据工程需要支持对接盘古大模型或三方大模型,为了使这些数据集能够被这些大模型正常训练,平台支持发布不同格式的数据集。 当前支持默认格式、盘古格式: 默认格式:数据工程功能支持的原始格式。 盘古格式:使用盘古大模型训练时所需要使用的数据格式。
其他类数据集格式要求 除文本、图片、视频、气象、预测类数据集外,平台还支持导入其他类数据集,即用户训练模型时使用的自定义数据集。 其他类数据集支持发布其他类数据集操作,不支持数据加工操作。
创建NLP大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。
创建CV大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。
数据打标 预训练文本分类 针对预训练文本进行内容分类,例如新闻、教育、健康等类别,支持分析语种包括:中文、英文。 通用质量评估 针对文本进行通用质量的评估,例如流畅度、清晰度、丰富度等。
提高训练效率 发布符合标准的数据集可以大幅提升数据处理效率,减少后续调整工作,帮助用户快速进入模型训练阶段。 数据集发布是数据工程中的关键环节,通过科学的数据比例调整和格式转换,确保数据集符合模型训练要求。
如何查看预置模型的历史版本 ModelArts Studio平台支持查看预置模型的多个历史版本,并提供对历史版本进行训练等操作的功能。您还可以查看每个版本的操作记录、状态以及其他基础信息。
使用API调用NLP大模型 预置模型或训练后的模型部署成功后,可以使用“文本对话”API实现模型调用。
模型开发-训练、评测最小数据量要求 使用ModelArts Studio平台训练、评测不同模型时,存在不同数据量的限制。以NLP大模型为例,请参考《用户指南》“开发盘古NLP大模型 > 使用数据工程构建NLP大模型数据集”。
该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。
评测数据集的创建步骤与训练数据集一致,本章节仅做简单介绍,详细步骤请参见使用数据工程构建NLP大模型数据集。 登录ModelArts Studio平台,进入所需空间。 在左侧导航栏中选择“数据工程 > 数据获取”,单击界面右上角“创建导入任务”。
创建科学计算大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。 在“创建部署”页面,参考表1完成部署参数设置。
流通视频类数据集 数据流通是将单个数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 视频类数据集当前仅支持发布为“默认格式”。
创建预测大模型部署任务 平台支持部署训练后的模型或预置模型,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,单击界面右上角“创建部署”。
准备工作 申请试用盘古大模型服务 订购盘古大模型服务 配置服务访问授权 创建并管理盘古工作空间 04 AI一站式流程 通过一站式流程,完成从数据导入、数据加工、数据发布、模型训练、模型压缩、模型部署、模型评测到模型调用,全面掌握盘古大模型的开发过程。
模型训练:使用处理后的数据集训练模型。 超参数调优:选择合适的学习率、批次大小等超参数,确保模型在训练过程中能够快速收敛并取得良好的性能。 开发阶段的关键是平衡模型的复杂度和计算资源,避免过拟合,同时保证模型能够在实际应用中提供准确的预测结果。
'database': { 'video_name':{ // 训练集 train 测试集 test。