检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
node_count Integer 训练作业选择的资源副本数。 pool_id String 训练作业选择的资源池ID。 flavor_detail FlavorDetail object 训练作业、算法的规格信息(该字段只有公共资源池存在)。
训练作业 创建训练作业 查询训练作业列表 查询训练作业版本详情 删除训练作业版本 查询训练作业版本列表 创建训练作业版本 停止训练作业版本 更新训练作业描述 删除训练作业 获取训练作业日志的文件名 查询预置算法 查询训练作业日志 父主题: 训练管理(旧版)
训练管理(旧版) 训练作业 训练作业参数配置 可视化作业 资源和引擎规格接口 作业状态参考 父主题: 历史API
训练管理 训练作业 资源和引擎规格接口
表2 get_job_log请求参数说明 参数 是否必选 参数类型 描述 task_id 否 String 要查看哪个工作节点的日志,默认值为"worker-0";如果在创建训练作业时参数train_instance_count选择了2,则可选值为"worker-0","worker
最小值:1 pool_id String 训练作业选择的资源池ID。 flavor_detail flavor_detail object 训练作业、算法的规格信息。 表43 flavor_detail 参数 参数类型 描述 flavor_type String 资源规格的类型。
查询训练作业列表 功能介绍 根据指定条件查询用户创建的训练作业。 URI GET /v1/{project_id}/training-jobs 参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。
支持通过算法资产、自定义算法、AI Gallery订阅算法创建训练作业,使训练作业的创建更灵活、易用 提供实验管理能力,用户通常需要调整数据集、调整超参等进行多轮作业从而选择最理想的作业,模型训练支持统一管理多个训练作业,方便用户选择最优的模型 提供训练作业的事件信息(训练作业生命周期中的关键事件点
训练作业调测 使用SDK调测单机训练作业 使用SDK调测多机分布式训练作业 父主题: 训练作业
表1 必须修改的训练超参配置 参数 示例值 参数说明 ORIGINAL_TRAIN_DATA_PATH /home/ma-user/work/training_data/train-00000-of-00001-a09b74b3ef9c3b56.parquet 必须修改。
最小值:1 pool_id String 训练作业选择的资源池ID。 flavor_detail flavor_detail object 训练作业、算法的规格信息。 表45 flavor_detail 参数 参数类型 描述 flavor_type String 资源规格的类型。
删除训练作业 功能介绍 删除训练作业。 此接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。 URI DELETE /v1/{project_id}/training-jobs/{job_id} 参数说明如表1所示。
training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 task_id 是 String 训练作业的任务名称。可从训练作业详情中的status.tasks字段中获取。
node_count Integer 训练作业选择的资源副本数。 pool_id String 训练作业选择的资源池ID。 flavor_detail FlavorDetail object 训练作业、算法的规格信息(该字段只有公共资源池存在)。
training_job_id 是 String 训练作业ID。获取方法请参见查询训练作业列表。 请求参数 无 响应参数 无 请求示例 如下以删除uuid为3faf5c03-aaa1-4cbe-879d-24b05d997347的训练作业为例。
停止训练作业版本 功能介绍 停止训练作业。 此接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。
查询训练作业日志 功能介绍 按行来查询训练作业日志详细信息。 URI GET /v1/{project_id}/training-jobs/{job_id}/versions/{version_id}/aom-log 参数说明如表1所示。
训练时会自动下载OBS中{training-project}目录下的数据到训练容器的本地路径$MA_JOB_DIR/{training-project}/。
Wav2Lip模型的输入为任意的一段视频和一段语音,输出为一段唇音同步的视频。 Wav2Lip的网络模型总体上分成三块:生成器、判别器和一个预训练好的唇音同步判别模型Pre-trained Lip-sync Expert。
处理方法 使用单标签分类的数据集进行训练。 父主题: 数据集问题导致训练失败