检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ip_forward Step2 下载依赖代码包并上传到宿主机 下载华为侧插件代码包AscendCloud-AIGC-6.3.912-xxx.zip文件,获取路径参见表1。本案例使用的是解压到子目录aigc_inference/torch_npu/diffusers/0.29.2/目录下的所有文件,将该目录上传到宿主机上。
AI Gallery简介 AI Gallery算法、镜像、模型、Workflow等AI数字资产的共享,为高校科研机构、AI应用开发商、解决方案集成商、企业级/个人开发者等群体,提供安全、开放的共享及交易环节,加速AI资产的开发与落地,保障AI开发生态链上各参与方高效地实现各自的商业价值。
OBSPath wf.data.OBSOutputConfig wf.data.OBSPlaceholder wf.data.SWRImage wf.data.SWRImagePlaceholder wf.data.Storage wf.data.InputStorage wf.data.OutputStorage
ip_forward Step2 下载依赖代码包并上传到宿主机 下载华为侧插件代码包AscendCloud-AIGC-6.3.907-xxx.zip文件,获取路径参见表1。本案例使用的是解压到子目录aigc_inference/torch_npu/diffusers/0.29.2/目录下的所有文件,将该目录上传到宿主机上。
图解ModelArts 初识ModelArts 初识Workflow
"image_info" : { "cpu_image_url" : "aip/tensorflow_2_1:train", "gpu_image_url" : "aip/tensorflow_2_1:train", "image_version"
5-7b qwen2.5-14b qwen2.5-32b qwen2.5-72b 推理 Ascend-vLLM Baichuan2 baichuan2-7b baichuan2-13b 推理 Ascend-vLLM gemma gemma-2b gemma-7b 推理 Ascend-vLLM
development and training. MindSpore is preset in the AI engine. Ascend 是 是 mindspore1.7.0-cann5.1.0-py3.7-euler2.8.3 Ascend+ARM算法开发和训练基础镜像,AI引擎预置MindSpore
AI应用管理 查询模型runtime 查询AI应用列表 创建AI应用 查询AI应用详情 删除AI应用
PRO的区别是什么? ModelArts自动学习,提供了AI初学者,零编码、零AI基础情况下,可使用自动学习功能,开发用于图像分类、物体检测、预测分析、文本分类、声音分类等场景的模型。 而ModelArts PRO是一款为企业级AI应用打造的专业开发套件。用户可根据预置工作流生成指定
注意力机制来捕捉序列中的依赖关系,从而提高生成图像的质量。研究表明,具有较高GFLOPs的DiT模型在图像生成任务中表现更好,尤其是在ImageNet 512×512和256×256的测试中,DiT-XL/2模型实现了2.27的FID值。 下文以Dit模型为例,介绍如何在昇腾设备上如何进行模型迁移,精度及性能调优。
托管数据集到AI Gallery AI Gallery上每个资产的文件都会存储在线上的AI Gallery存储库(简称AI Gallery仓库)里面。每一个数据集实例视作一个资产仓库,数据集实例与资产仓库之间是一一对应的关系。例如,模型名称为“Test”,则AI Gallery仓
片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、自然语言处理、音视频分析等AI项目场景。 ModelArts Standard数据管理模块重构中,当前能力不做演进,将结合大模型时代能力进行全新升级,敬请期待。 ModelArts
勾选“我已阅读并同意《华为云AI Gallery数字内容发布协议》和《华为云AI Gallery服务协议》”。 图2 发布AI Gallery Notebook 界面提示成功创建分享后,返回至AI Gallery,进入示例的详情页面查看示例。 进入AI Gallery首页。选择“项目”,进入项目列表页面。
使用自动学习实现零代码AI开发 自动学习简介 使用自动学习实现图像分类 使用自动学习实现物体检测 使用自动学习实现预测分析 使用自动学习实现声音分类 使用自动学习实现文本分类 使用窍门
托管镜像到AI Gallery 创建镜像资产 登录AI Gallery,单击右上角“我的Gallery”进入我的Gallery页面。 单击左上方“创建资产”,选择“镜像”。 在“创建镜像”弹窗中配置参数,单击“创建”。 表1 创建镜像 参数名称 说明 英文名称 必填项,镜像的英文名称。
在镜像详情页,选择“镜像文件”页签。单击操作列的“删除”,确认后即可将已经托管的文件从AI Gallery仓库中删除。 文件删除后不可恢复,请谨慎操作。 下架镜像 AI Gallery中已上架的资产支持下架操作。 在AI Gallery首页,选择右上角“我的Gallery”。 在“我的资产”下,查看已上架的资产。
文件说明 gallery_train文件夹 自定义模型的模型训练文件,仅当使用自定义模型微调时才会有这个微调产物,内容和预训练模型里的gallery_train文件一致。 training_logs/user_params.json 微调配置参数信息,AI Gallery会自动将微调设置的参数信息记录在此文件下。
场景介绍 本小节通过一个具体问题案例,介绍模型精度调优的过程。 如下图所示,使用MindSpore Lite生成的图像和onnx模型的输出结果有明显的差异,因此需要对MindSpore Lite pipeline进行精度诊断。 图1 结果对比 在MindSpore Lite 2.0
创建标注任务 基于数据集创建标注任务。 dataset.create_label_task(self, task_name=None, task_type=None, **kwargs) 示例代码 示例一:基于图像类型的数据集创建物体检测标注任务。 from modelarts.session