检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
@modelarts:color 否 String 内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape 否 String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。
获取账号名和账号ID 在调用接口的时候,部分请求中需要填入账号名(domain name)和账号ID(domain_id)。获取步骤如下: 注册并登录管理控制台。 鼠标移动至用户名,在下拉列表中单击“我的凭证”。 在“API凭证”页面的查看“账号名”和“账号ID”。 图1 获取账号名和ID
8*ascend-snt9b表示昇腾8卡。 推荐使用“西南-贵阳一”Region上的昇腾资源。 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先
授权”。 在弹出的“添加授权”窗口中,选择: 授权对象类型:所有用户 委托选择:新增委托 权限配置:普通用户 选择完成后勾选“我已经详细阅读并同意《ModelArts服务声明》”,然后单击“创建”。 图1 配置委托访问授权 完成配置后,在ModelArts控制台的权限管理列表,可查看到此账号的委托配置信息。
8*ascend-snt9b表示昇腾8卡。 推荐使用“西南-贵阳一”Region上的昇腾资源。 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先
钟。 由于出现此错误,常见原因是内存占用满导致的,您可以尝试使用如下方法,从根本上解决错误。 方法1:将Notebook更换为更高规格的资源。 方法2:可以参考如下方法调整代码中的参数,减少内存占用。如果代码调整后仍然出现内存不足的情况,请使用方法1。 调用sklearn方法si
存储路径。 如果type为“obs”类型,该值必须填写,该值需为有效的OBS桶路径,且以“/”结束。不能指定为OBS桶的根目录,需指定为OBS桶下的具体目录。 如果type为“obsfs”类型,该值需为有效的OBS并行文件系统的桶名(当前CCE不支持挂载子目录)。 如果type为“evs”类型,该值不需要填写。
方法1:如果您希望使用公共资源池下的Ascend Snt3,可以等待其他用户释放,即其他使用Ascend Snt3芯片的服务停止,您即可选择此资源进行部署上线。 方法2:如果专属资源池还有Ascend Snt3资源,您可以创建一个Ascend Snt3专属资源池使用。 方法3:如果专属资源池的Ascend
__mul__.2在forward计算阶段的第一个input存在偏差。 追溯代码实现是下图中noise变量使用torch.rand_like ()作noise变量的初始化 (下图第730行)。由于torch.rand_like()该函数会根据输入的input构造同样size、dtype
8*ascend-snt9b表示昇腾8卡。 推荐使用“西南-贵阳一”Region上的昇腾资源。 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先
Tensorflow和Caffe框架的模型格式转换为MindSpore的模型格式,即模型后缀为.om,使之能在昇腾硬件中进行推理。由于产品演进规划,后续昇腾硬件推理时主要使用后缀为.mindir的模型格式,因此ModelArts下线.om格式的模型转换能力,在ModelArts中逐步增加
)和本地上传。 数据集中的数据导入入口 数据集中的数据导入有5个入口。 创建数据集时直接从设置的数据导入路径中自动同步数据。 创建完数据集后,在数据集列表页面的操作栏单击“导入”,导入数据。 图1 在数据集列表页导入数据 在数据集列表页面,单击某个数据集的名称,进入数据集详情页中,单击“导入>导入”,导入数据。
found。 原因分析 该报错信息表示验证集中有label在训练集中不存在,可能由于在发布数据集版本进行数据切分时,训练集比例填写为0导致发布的数据全部为验证集,所以出现上述报错。 处理方法 重新发布数据,切分比例为0.8 或者0.9重新创建训练作业进行训练。 父主题: 训练作业运行失败
String 作业状态的查询,默认为所有状态,例如查看创建失败的作业,可选的“status”为“3”|“5”|“6”|“13”,详细作业状态列表请参见作业状态参考。 per_page 否 Integer 指定每一页展示作业的总量,默认为10,“per_page”可选的范围为[1,1000]。
创建训练作业后,会在节点机器中使用基础镜像创建docker容器,并在容器内进行分布式训练。而install.sh则会在容器内安装依赖以及下载完整的代码。当训练作业结束后,对应的容器也会同步销毁。 图1 训练作业启动命令 父主题: 准备镜像
MindSpore-GPU engine_id Long 训练作业的引擎ID。 engine_name String 训练作业的引擎名称。 engine_version String 训练作业使用的引擎版本。 请求示例 如下以查看训练作业的资源引擎规格为例。 GET https://en
如何查看训练作业资源占用情况? 在ModelArts管理控制台,选择“模型训练>训练作业”,进入训练作业列表页面。在训练作业列表中,单击目标作业名称,查看该作业的详情。您可以在“资源占用情况”页签查看到如下指标信息。 CPU:CPU使用率(cpuUsage)百分比(Percent)。 MEM:物理内存
像构建及调试与单机单卡相同。 上传镜像,参考单机单卡训练的上传镜像章节操作。 操作步骤 登录Imagenet数据集下载官网地址,下载Imagenet21k数据集:http://image-net.org/ 下载格式转换后的annotation文件:ILSVRC2021winner21k_whole_map_train
开发者的新特性需求。基于服务演进,ModelArts团队已于2021年上线新版训练,力求解决存在的历史问题,并为新特性提供高性能、高易用、可扩展、可演进的底座,给用户提供更好的AI训练体验,打造易用、高效的AI平台。 下线旧版训练管理对现有用户的使用是否有影响? 正在使用的训练作
获取用户名和用户ID 在调用接口的时候,部分请求中需要填入用户名(user name)和用户ID(user_id)。获取步骤如下: 注册并登录管理控制台。 鼠标移动至用户名,在下拉列表中单击“我的凭证”。 在“API凭证”页面,查看“IAM用户名”和“IAM用户ID”。 图1 获取用户名和ID