检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过ModelArts预置算法训练得到的模型是保存在OBS桶里的,模型支持下载到本地。 在训练作业列表找到需要下载模型的训练作业,单击名称进入详情页,获取训练输出路径。 图1 获取训练输出位置 单击“输出路径”,跳转至OBS对象路径,下载训练得到的模型。 在本地环境进行离线部署。
创建模型时,OBS文件目录对应镜像里面的目录结构是什么样的? 问题现象 创建模型时,元模型来源指定的OBS目录下存放了自定义的文件和文件夹,都会复制到镜像中去。复制进去的路径是什么,怎么读取对应的文件或者文件夹里面的内容? 原因分析 通过OBS导入模型时,ModelArts会将指
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的 llm_train/AscendSpeed
导入数据集失败 导入数据集失败可能原因为OBS桶类型选择错误,请您选择标准存储类型的桶导入。 父主题: Standard数据管理
日志提示“Please set the train_url to an empty obs directory” 问题现象 日志提示“Please set the train_url to an empty obs directory”。 原因分析 对于不支持断点训练的模型,若选择训练输出路径不是空目录,会出现该报错。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
JSON内容需定义一个source字段,字段值是OBS的文件地址,有2种表达形式: 桶路径“<obs path>{{桶名}}/{{对象名}}/文件名”,适用于访问自己名下的OBS数据;您可以访问OBS服务的对象获取路径。<obs path>可以为“obs://”或“s3://”。 OBS生成的分享链接,包含
ModelArts中创建的数据集,如何在Notebook中使用 ModelArts上创建的数据集存放在OBS中,可以将OBS中的数据下载到Notebook中使用。 Notebook中读取OBS数据方式请参见如何在Notebook中上传下载OBS文件?。 父主题: 更多功能咨询
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
JupyterLab目录的文件、Terminal的文件和OBS的文件之间的关系 JupyterLab目录的文件与Terminal中work目录下的文件相同。即用户在Notebook中新建的,或者是从OBS目录中同步的文件。 挂载OBS存储的Notebook,JupyterLab目录的文件可以与OBS的文件进行同步,使
Notebook。 Step2 准备权重文件 将OBS中的模型权重上传到Notebook的工作目录/home/ma-user/work/下。上传代码参考如下。 import moxing as mox obs_dir = "obs://${bucket_name}/${folder-name}"
Notebook。 Step2 准备权重文件 将OBS中的模型权重上传到Notebook的工作目录/home/ma-user/work/下。上传代码参考如下。 import moxing as mox obs_dir = "obs://${bucket_name}/${folder-name}"
建议使用OBSutil作为和OBS交互的工具,如何在本机安装obsutil可以参考安装和配置OBS命令行工具。 训练数据、代码、模型下载。(本地使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil) 启动脚本,用法无切换,一般就是到达执行目录,然后python
Notebook。 Step2 准备权重文件 将OBS中的模型权重上传到Notebook的工作目录/home/ma-user/work/下。上传代码参考如下。 import moxing as mox obs_dir = "obs://${bucket_name}/${folder-name}"
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的 llm_train/AscendSpeed
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到OBS中,具体参考代码上传至OBS。 Step1 创建训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及选择上传的镜像。 代码目录选择:OBS桶路径下的llm_train/AscendSpeed代码目录。