检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
园区场景下,实现车牌识别、安全帽检测等功能。 智慧家庭 家庭检测、家居智能化场景下,实现手势识别、哭声检测等功能。 智慧商超 商店和超市场景下,实现VIP识别、客流量统计等功能。 用户群体 ModelArts Pro用户群体主要是各大政企,一般具有如下特点。 了解行业解决方案,懂得行业知识。 缺乏或略懂AI知识,熟悉问题场景。
开始标注”,在“数据标注”页面手动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,您可以在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图3 标签解析 后续操作 在“数据选择”页面选择训练数据集,并针对未标注的数据进行
角的“开始标注”,在“数据标注”页面手动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 选择训练数据集后,单击右下角的“下一步”,进入应用开发的
注数据。 勾选当前应用开发所需的训练数据集。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,您可以在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 后续操作 在“数据选择”页面选择训练数据集,并针对未标注的数据进行数据标注,然后单
角的“开始标注”,在“数据标注”页面手动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 选择训练数据集后,单击右下角的“下一步”,进入应用开发的
热轧钢板表面缺陷检测工作流标注数据时,必须使用矩形标注框标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 选择训练数据集后,单击右下角的“下一步”,进入应用开发的
标注页面,开始手动标注数据。 图6 数据集标注任务 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图7 标签解析 后续操作 选择训练数据集后,单击右下角的“下一步”,进入应用开发的“模型训练”步骤,详细操作指引请参见4
自动标注数据 单击“下一步”,创建SKU后,自动标注数据。 查看标签解析 新建并选择训练数据集后,针对已标注的数据,在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图5 标签解析 后续操作 在“数据选择”页面选择训练数据集,针对未标注的数据进行数
及合并标签后新的“标签名”。 图3 合并标签 查看标签解析 新建并选择训练数据集后,针对已标注的数据,您可以在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图4 标签解析 后续操作 在“数据选择”页面选择训练数据集,并针对未标注的数据进行
及合并标签后新的“标签名”。 图5 合并标签 查看标签解析 新建并选择训练数据集后,针对已标注的数据,您可以在“标签解析”中查看标签样本的统计数据,横轴为“标签”,纵轴为标签对应的有效“样本数”。 图6 标签解析 后续操作 在“数据选择”页面选择训练数据集,并针对未标注的数据进行
选择步骤1:准备数据中提前创建好的输出数据集的OBS路径“mapro-nlp/data-out”。 勾选已上传的数据集。 服务进行标签解析,统计训练数据集中各个标签的样本数。 您可以选择打开“合并标签”开关,将样本数量较少的标签在模型训练中进行合并,以达到更优训练效果。 图7 数据选择
不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注
不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注
不要把明显不同的多个任务数据放在同一个数据集内。 为了保证模型的预测准确度,训练样本跟真实使用场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>
<filename>image_0006.jpg</filename> <source> <database>Unknown</database> </source> <size> <width>512</width>
<filename>bike_1_1593531469339.png</filename> <source> <database>Unknown</database> </source> <size> <width>554</width>