检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为什么其他大模型适用的提示词在盘古大模型上效果不佳 提示词与训练数据的相似度关系。 提示词的效果通常与训练数据的相似度密切相关。当提示词的内容与模型在训练过程中接触过的样本数据相似时,模型更容易理解提示词并生成相关的输出。这是因为模型通过学习大量的训练数据,逐渐建立起对特定模式、
与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
在“创建用户组”界面,输入“用户组名称”,单击“确定”,创建用户组。 返回用户组列表,单击操作列的“授权”。 图2 用户组授权 参考表1,在搜索框中搜索授权项,为用户组设置权限,选择后单击“下一步”。 表1 授权项 授权项 说明 Agent Operator 拥有该权限的用户可以切换角色到委托方账号中,访问被授权的服务。
根据每个客户的实际对话知识,如帮助文档、案例库和FAQ库等,可以使用“先搜后推”的解决方案。客户的文档库可以实时更新,大模型的应答可以无缝实时更新。(搜索+大模型解决方案) 父主题: 大模型概念类问题
撰写所需提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,
反之若发现内容过于单一,甚至出现了复读机式的重复内容生成,则需要增加“话题重复度控制”的值。 知识问答:对于文本生成场景(开放问答、基于搜索内容回答等),从客观上来说,回答需要是确定且唯一的,建议降低“温度”或“核采样”的值(二者选其一调整)。若需要每次生成完全相同的回答,可以将“温度”置为0。
moderation_config objects 内容审核配置项。 enable_search 否 boolean 是否启动搜索增强。 默认值为false,如果开启搜索增强,请赋值为true。 表5 moderation_config 参数 参数类型 描述 black_glossary_names
打造短视频营销文案创作助手 场景介绍 随着互联网的发展,短视频已成为了日常生活中不可或缺的一部分,凭借其独特的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供
路信息调测评估等特点。 能力扩展:平台可以集成多种插件,插件能够有效扩展Agent的能力边界。、 内置插件:平台集成了各种类型的插件,包含搜索、图片理解等。支持开发者直接将插件添加到Agent中,丰富Agent的能力。 自定义插件:平台支持开发者创建自定义插件。支持开发者将工具、
设置背景及人设 背景: 模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或
基于NL2JSON助力金融精细化运营 场景介绍 在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输
意图识别组件一般位于工作流前置位置。在对用户的输入进行意图识别时,意图识别组件会通过大模型推理,匹配用户输入与开发者预先定义的描述类别的关键字,并根据匹配结果流向对应处理流程。 在左侧组件面板中拖拽出一个“意图识别”组件,并放置在工作流中。 单击画布中的“意图识别”组件,打开参数配置页面。
流程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Search来搭建,也可以利用外部web搜索引擎。在初步验证大模型效果时,可以假设检索出的文档完全相关,将其与query及特定prompt模板拼接后输入模型,观察输出是否符合预期。 选择基模型/基础功能模型
NLP大模型训练流程与选择建议 NLP大模型训练流程介绍 NLP大模型专门用于处理和理解人类语言。它能够执行多种任务,如对话问答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型
<filename>image_0006.jpg</filename> <source> <database>Unknown</database> </source> <size> <width>230</width>
单击“节点详情”页签。 可以查看到该次执行的主要组件耗时时长和占比情况,以及该次执行的调用链及其是否成功的状态。 单击调用链中的某个组件(例如插件天气搜索),展开调用链。 可以查看到调用链中该组件的输入和输出。 此外,平台支持配置构建应用所需的NLP大模型参数。 单击应用右上角的,打开大模型
数据集标注场景介绍 数据标注概念 数据标注是数据工程中的关键步骤,旨在为无标签的数据集添加准确的标签,从而为模型训练提供有效的监督信号。标注数据的质量直接影响模型的训练效果和精度,因此高效、准确的标注过程至关重要。数据标注不仅仅是人工输入,它还涉及对数据内容的理解和分类,以确保标签精准地反映数据的特征和用途。
数据工程 ModelArts Studio大模型开发平台提供了全面的数据工程功能,支持从数据源导入到数据质量控制的全流程管理。该模块涵盖数据获取、加工、标注、评估和发布等关键环节,帮助用户高效构建高质量的训练数据集,推动AI应用的成功落地。具体功能如下: 数据获取:用户可以轻松将多种类型的数据导入ModelArts
数据集评估场景介绍 数据评估概念 数据评估旨在通过对数据集进行系统的质量检查,评估其准确性、完整性、一致性和代表性等多个维度,发现潜在问题并加以解决。 在构建和使用数据集的过程中,数据评估是确保数据质量的关键步骤,直接影响模型的性能和应用效果。高质量的数据集能够显著提升模型的准确
数据集发布场景介绍 数据发布概念 数据发布是指将经过加工、标注、评估的数据集导出并生成符合特定任务或模型训练需求的正式数据集。数据发布是数据处理流程中的关键步骤,也是数据集构建的最终环节。 数据发布过程不仅包括将数据转化为适合使用的格式,还要求根据任务需求对数据集的比例进行科学调