检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化
如下: {"context": "你好,请介绍自己", "target": "我是盘古大模型"} csv格式:csv文件的第一列对应context,第二列对应target,具体格式示例如下: "你好,请介绍自己","我是盘古大模型" 单个文件大小不超过50GB,文件数量最多1000个。。
具体格式要求详见表1。 表1 预测类数据集格式要求 文件内容 文件格式 文件样例 时序 csv 数据为结构化数据,包含列和行,每一行表示一条数据,每一列表示一个特征,并且必须包含预测目标列,预测目标列要求为连续型数据。 目录下只有1个数据文件时,文件无命名要求。 目录下有多个数据文件时,需要通过命名
推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。 模型规格:不同规格的模型支持的长度不同,若目标任务本身需要生成的长度已经
moderation_config 参数 参数类型 描述 black_glossary_names String 黑名单词库列表。 white_glossary_names String 白名单词库列表。 question_moderation boolean 是否开启对提示词进行内容审核,true:
由于不同厂商采用的训练策略和数据集差异,同一提示词在不同模型上的效果可能大不相同。例如,某些模型可能在处理特定领域的数据时表现得更好,而另一些模型则可能在更广泛的任务上更为出色。 根据盘古大模型特点调整提示词。 直接使用在其他大模型上有效的提示词,可能无法在盘古大模型上获得相同
ghtGBM模型,另外5个是推荐的不同模型。 日期列名 日期列的列名。例如,["date"]表示csv数据中date列为日期列,默认设置为[],表示没有日期列,选择全部数据做训练。 标识列 在时间序列中可以定义粒度的id相关的列。 历史窗口大小 指模型在训练时基于多少个历史数据点作为输入。取值范围为[2
拟合度 拟合度是一种衡量模型对数据拟合程度的指标。数值范围为0到1,数值越接近1,表示模型对数据的拟合程度越好。 均方根误差 均方根误差是预测值与真实值之间差异的平方和的均值的平方根。它用于衡量模型预测值与实际值之间的偏差,数值越小,表明模型预测的精度越高。 平均绝对误差 平均绝
在左侧导航栏中选择“模型开发 > 应用接入”,单击界面右上角“创建应用接入”。 在“应用配置”中,选择已部署好的大模型,单击“确定”。 在“应用接入”列表的“APP Code”操作列中可获取APPCode值。 如图3,为Token认证方式的请求Header参数填写示例。 图3 配置请求参数 在Postman中选择“Body
精准率和召回率的调和平均数,数值越高,表明模型性能越好。 BLEU-1 模型生成句子与实际句子在单字层面的匹配度,数值越高,表明模型性能越好。 BLEU-2 模型生成句子与实际句子在词组层面的匹配度,数值越高,表明模型性能越好。 BLEU-4 模型生成结果和实际句子的加权平均精确率,数值越高,表明模型性能越好。
现的频率。这个指标用来衡量模型在各个类别上的总体性能,数值越高,表明模型性能越好。 平均精度 平均精度用于衡量模型在不同类别上的检测准确率。数值越高,表明模型性能越好。 平均交并比 平均交并比是所有类别的交并比的平均值。数值越高,表明模型在所有类别上的性能越好。 像素精度 像素精
训练预测大模型时,所需的数据通常为表格格式,即由行和列组成的扁平化数据。具体要求如下: 行:每行代表一个样本。每行与其他行具有相同的列,并且顺序相同,这些行通常按照某种特定顺序排列。 列:每列表示一种特征。每列的数据类型应保持一致,不同列可以具有不同的数据类型。 顺序:表格中的行通常按照特定顺序排列。 行数:数据表的行数应大于5000行。
评分,识别运动幅度过快(如>100光流)或过慢(如≤2光流)的视频,数值越大表示运动过快。 质量基础评分 对视频的基础质量(清晰度、亮度、模糊、画面抖动重影、低光过曝、花屏等)进行评分。分值范围(0, 1),数值越高质量越好,评分>0.05可认为是视频基础质量较高的视频。 美学评分
如垃圾暴露、道路破损、围栏破损等,一个城市一般有几百种事件类别。同时,不同城市可能还有不同的标准,某城市关注某一些特定事件类别,另一个城市又关注另一些特定事件类别。因此,城市政务场景面临着众多碎片化AI需求场景。 传统的AI开发模式需要对每种目标类别单独采集数据、训练模型,依赖
口响应消息头中X-Subject-Token的值即为Token。 Content-Type 是 String 发送的实体的MIME类型,参数值为“application/json”。 表3 请求Body参数 参数 是否必选 参数类型 描述 data 是 List<String>
能会被忽略,较小的patch_size则相反。需要注意: 数据格式为[int,int,int],第一个值需要大于0小于等于4,第二、三个参数都需要大于1小于等于20。 在高方向patch_size[0]*window_size[0]需小于高空层次个数。 在东西方向patch_si
在左侧导航栏中选择“模型开发 > 应用接入”,单击界面右上角“创建应用接入”。 在“应用配置”中,选择已部署好的大模型,单击“确定”。 在“应用接入”列表的“APP Code”操作列中可获取APPCode值。 如图3,为Token认证方式的请求Header参数填写示例。 图3 配置请求参数 在Postman中选择“Body
填写请求Header参数。 参数名为Content-Type,参数值为application/json。 参数名为X-Auth-Token,参数值为步骤1中获取的Token值。 参数名为stream,参数值为true。当前工作流仅支持流式调用。 在Postman中选择“Body
50个字符,参数名称会作为大模型解析参数含义的依据。 参数描述 参数的描述,长度为1 ~ 200个字符,参数描述会作为大模型解析参数含义的依据。 参数类型 该参数值的数据类型,当前支持三种类型。 String:字符串类型 Integer:四字节整型 Number:八字节浮点数 请求方式 默认以Body方式请求。
在左侧导航栏中选择“模型开发 > 应用接入”,单击界面右上角“创建应用接入”。 在“应用配置”中,选择已部署好的大模型,单击“确定”。 在“应用接入”列表的“APP Code”操作列中可获取APPCode值。 AK/SK认证 AK/SK签名认证方式仅支持消息体大小12M以内,12M以上的请求请使用Token认证。