检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
处理方法 结合当前购买的SFS盘性能规划业务, 建议不要运行到性能上限。 可以购买多个SFS Turbo实例分担业务压力, 或者更换高性能的SFS盘。 一个SFS实例容量建议不要太大,建议以同样的成本换成购买多个SFS实例。 父主题: Lite Server
欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。
智能标注是否支持多边形标注? 团队标注的完成验收的各选项表示什么意思? 同一个账户,图片展示角度不同是为什么? 智能标注完成后新加入数据是否需要重新训练? 为什么在ModelArts数据标注平台标注数据提示标注保存失败? 标注多个标签,是否可针对一个标签进行识别? 使用数据处理的数据扩增功能后,新增图片没有自动标注
driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 如果需要多个全量实例,每个全量都需要启动一个容器,只挂载对应的NPU --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id}
在Notebook中添加自定义IPython Kernel 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1.2.0”的IPython Kernel为例进行展示。 操作步骤
使用从OBS选择的数据创建表格数据集如何处理Schema信息? Schema信息表示表格的列名和对应类型,需要跟导入数据的列数保持一致。 如果您的原始表格中已包含表头,需要开启“导入是否包含表头”开关,系统会导入文件的第一行(表头)作为列名,无需再手动修改Schema信息。 如果您的原始表格中没
0 CANN:cann_8.0.rc2 PyTorch:2.1.0 Step1 创建ECS 下文中介绍如何在ECS中构建一个推理镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。
暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本 在ModelArts管理控制台,创建一个Notebook实例,镜像选择“TensorFlow-1
的资源使用情况,最多可显示最近三天的数据。在资源占用情况窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“gpuMemUsage”、“gpuUtil”、“me
资源超分对Notebook实例有什么影响? Notebook超分,是指一个节点中CPU、内存共享的场景。为了充分利用资源,在专属池中存在超分情况。 举例:一个专属池中有1个8U64G的CPU节点,如创建2U8G规格的Notebook,因为超分最多可启动 8U/(2U*0.6)= 6
driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的I
实际情况来选择batch_size,防止batch_YLLsize过大导致内存溢出。 提升数据读取的效率:如果读取一个batch数据的时间要长于GPU/NPU计算一个batch的时间,就有可能出现GPU/NPU利用率上下浮动的情况。建议优化数据读取和数据增强的性能,例如将数据读取并行化,或者使用NVIDIA
driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的I
driver及npu-smi需同时挂载至容器。 不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。 --name ${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的I
NetB4进行训练报错:TypeError: unhashable type: ‘list’。 原因分析 可能由于使用了多标签分类导致(即一个图片用了1个以上的标签)。 处理方法 使用单标签分类的数据集进行训练。 父主题: 数据集问题导致训练失败
务 场景描述 本案例介绍如何在Snt9B环境中利用Deployment机制部署在线推理服务。首先创建一个Pod以承载服务,随后登录至该Pod容器内部署在线服务,并最终通过新建一个终端作为客户端来访问并测试该在线服务的功能。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为ber
ECS获取和上传基础镜像 Step1 创建ECS 下文中介绍如何在ECS中构建一个训练镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注
ECS获取和上传基础镜像 Step1 创建ECS 下文中介绍如何在ECS中构建一个训练镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注
ECS获取和上传基础镜像 Step1 创建ECS 下文中介绍如何在ECS中构建一个训练镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注
说明,针对常用AI引擎的自定义脚本代码示例(包含推理代码示例),请参见自定义脚本代码示例。本文在编写说明下方提供了一个TensorFlow引擎的推理代码示例以及一个在推理脚本中自定义推理逻辑的示例。 ModelArts推理因API网关(APIG)的限制,模型单次预测的时间不能超过