检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora
ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward 步骤二:获取基础镜像 建议使用官方提供的镜像部署服务。镜像地址{image_url}参见表2。 docker pull {image_url} 步骤三:启动容器镜像
选择Python版本 对于打开的代码文件,单击run按钮,即可执行,可以在下方的Terminal中看到代码输出信息。 如果执行较长时间的训练作业,建议使用nohup命令后台运行,否则SSH窗口关闭或者网络断连会影响正在运行的训练作业,命令参考: nohup your_train_job.sh
Gallery会将资产保存在AI Gallery官方的SWR仓库内。 对于用户提供的一些个人信息,AI Gallery会保存在数据库中。个人信息中的敏感信息,如手机,邮箱等,AI Gallery会在数据库中做加密处理。 AI Gallery的更多介绍请参见《AI Gallery》。 父主题: 安全
ip_forward=1/g' /etc/sysctl.conf sysctl -p | grep net.ipv4.ip_forward 获取基础镜像。建议使用官方提供的镜像部署推理服务。镜像地址{image_url}参见表1:获取软件和镜像 docker pull {image_url} 启
<filename>image_0006.jpg</filename> <source> <database>Unknown</database> </source> <size> <width>230</width>
格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 不同模型推荐的参数与NPU卡数设置 序号 支持模型 支持模型参数量 文本序列长度 并行参数设置 规格与节点数 1 llama2 llama2-7b SEQ_LEN=4096 TP(tensor model
点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora
JSON Array 标注对象列表,详细请见表4。 表3 source参数 参数 参数类型 描述 database String 数据集名称,比如“The VOC2007 Database”。 annotation String 标注,比如“PASCAL VOC2007”。 image
排序依据字段,例如sort_by=create_time,则表示以条目的创建时间进行排序。 offset 否 String 分页参数offset,表示单次查询的条目偏移数量。假如要查询20~29条记录,offset为20,limit为10。 labels 否 String 执行记录标签。 status 否 String
当托管的是自定义镜像时,填写的内容要满足自定义镜像规范,否则该镜像无法正常使用AI Gallery工具链服务(微调大师和在线推理服务)。 说明: 建议写清楚模型的使用方法,方便使用者更好的完成训练、推理任务。 表2 任务类型支持的AI Gallery工具链服务 任务类型 微调大师 在线推理服务
推理代码包 |──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir}(例如使用SFS Turbo的路径:/mnt/sfs_turbo/)
Turbo的VPC网段的安全组是否被限制了。 在所选专属资源池中新建一个未挂载的SFS Turbo的训练作业,当训练作业处于“运行中”时,通过Cloud Shell功能登录训练作业worker-0实例,使用curl {sfs-turbo-endpoint}:{port}命令检查port是否正常打开,SFS
查询20~29条记录,offset为20,limit为10。 offset 否 String 分页参数offset,表示单次查询的条目偏移数量。假如要查询20~29条记录,offset为20,limit为10。 sort_by 否 String 排序依据字段,例如sort_by=
模型和版本号。 “计算节点规格”:在下拉框中选择“限时免费”资源,勾选并阅读免费规格说明。 其他参数可使用默认值。 如果限时免费资源售罄,建议选择收费CPU资源进行部署。当选择收费CPU资源部署在线服务时会收取少量资源费用,具体费用以界面信息为准。 参数配置完成后,单击“下一步”
修改训练Yaml配置文件修改超参值后,修改config.yaml中的${command},替换为容器中执行训练的命令。Llama2-70B建议为4机32卡训练。 多机启动 以 Llama2-70B 为例,修改多机config.yaml模板中的${command}命令如下。多机启动
/bms/v1/region" ) func main() { // 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全; // 本示例以ak和sk保存在环境变量中来实现身份验证为例,运行本示例前请先在
del的build_from_file接口进行模型加载和模型编译。模型加载阶段将文件缓存解析成运行时的模型。模型编译阶段会耗费较多时间所以建议Model创建一次,编译一次,多次推理。 model = mslite.Model() model.build_from_file("./resnet50
# modelLink兼容旧版本启动方式目录 |──Dockerfile 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdir}(例如/home/ma-user/ws )
# modelLink兼容旧版本启动方式目录 |──Dockerfile 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir} |──llm_train