检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
step:已完成的训练步数。 batch_size:每个训练步骤中使用的样本数量。 sequence:每个数据样本中的Token数量。 数据预处理并发个数 定义了在预处理数据时,能够同时处理文件的并行进程数量。设定这个参数的主要目的是通过并发处理来加速数据预处理,从而提升训练效率。
启用时,可以指定参与标注的人员及标注数量。 标注审核 是否审核 否,标注后不进行审核操作。 是,审核员会检查标注员的标注内容,若发现问题,审核员可注明原因并驳回标注数据,标注员需重新标注。 启用多人审核 关闭时,默认管理员单人审核 启用时,可以指定参与审核的人员及审核数量。 审核要求 全部审核
程可以基于python代码实现,也可以人工模拟每一步的执行情况。检索模块可以使用Elastic Search来搭建,也可以利用外部web搜索引擎。在初步验证大模型效果时,可以假设检索出的文档完全相关,将其与query及特定prompt模板拼接后输入模型,观察输出是否符合预期。 选择基模型/基础功能模型
命中测试”。 在文本框中输入问题,单击“命中测试”,页面下方将展示多条匹配的内容,并按照匹配分值降序排列。 用户可以根据分值与匹配到的信息数量来评估当前知识库是否满足需求。 单击“查看历史”,可以查看用户输入的历史问题。 父主题: 创建与管理知识库
标注分配与审核配置 参数类型 参数名称 参数说明 标注分配 启用多人标注 关闭时,默认管理员单人标注。 启用时,可以指定参与标注的人员及标注数量。 标注要求 选择标注项为“图片Caption”且开启AI预标注功能时,可设置以下两种方式的“标注要求”: 选择“全部标注”:要求标注人员
领域知识和外部工具来增强大语言模型的能力。 提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的指令或问题等信息,也可以包含其他种类的信息,如上下文、输入或示例等。您可以通过这些元素来更好
在左侧导航栏中选择“数据工程 > 数据发布 > 数据评估”,单击界面右上角“创建评估任务”。 在“数据集选择”页签选择需要评估的加工数据集,并设置抽样样本的数量。 单击“下一步”,选择评估标准。单击“下一步”设置评估人员,单击“下一步”填写任务名称。 单击“完成创建”,将返回至“数据评估”页面,评
如果该场景的业务规则较少且易于概括,可以尝试使用few-shot方式,通过向模型提供少量示例来让其理解任务并进行推理。 如果业务规则复杂且难以归纳,建议使用场景微调的方式,针对该特定场景进行模型训练,以便模型能够更深入地理解和适应这些复杂规则。 父主题: 提示词工程类
模型在输出时会从概率最高的词汇开始选择,直到这些词汇的总概率累积达到核采样值,核采样值可以限制模型选择这些高概率的词汇,从而控制输出内容的多样性。建议不要与温度同时调整。 温度 用于控制生成结果的随机性。调高温度,会使得模型的输出更具多样性和创新性;降低温度,会使输出内容更加遵循指令要求,但同时也会减少模型输出的多样性。
在左侧导航栏中选择“数据工程 > 数据发布 > 数据评估”,单击界面右上角“创建评估任务”。 在“数据集选择”页签选择需要评估的加工数据集,并设置抽样样本的数量与字符数。 单击“下一步”,选择评估标准。单击“下一步”设置评估人员,单击“下一步”填写任务名称。 单击“完成创建”,将返回至“数据评估”
在左侧导航栏中选择“数据工程 > 数据发布 > 数据评估”,单击界面右上角“创建评估任务”。 在“数据集选择”页签选择需要评估的加工数据集,并设置抽样样本的数量。 单击“下一步”,选择评估标准。单击“下一步”设置评估人员,单击“下一步”填写任务名称。 单击“完成创建”,将返回至“数据评估”页面,评
U;1000:T;800:?abc”。 可选择的要素参考表8中,提供的高空变量和表面变量。 num_ensembles 否 Long 集合数量。在气象预报中,集合预报是指对初始场加入一定程序的扰动,使其生成一组由不同初始场预报的天气预报结果,从而提供对未来天气状态的概率信息。这种
服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。 SDK运行报错 java.lang.NoClassDefFoundError:
String 确定性预报的输出要素,例如“Surface:U;1000:T;800:?abc”。 num_ensembles Long 集合成员数量。 ensemble_forecast_features String 集合预报的输出要素,例如“Surface:U;1000:T;800:
效率。如果规模较大,那么可能需要较小的学习率和较小的批量大小,防止内存溢出。 这里提供了一些微调参数的建议值和说明,供您参考: 表1 微调参数的建议和说明 训练参数 范围 建议值 说明 训练轮数(epoch) 1~50 2/4/8/10 训练轮数是指需要完成全量训练数据集训练的次
的边界框保留的条件。 类别无关极大值抑制开关 决定是否在不同类别中应用极大值抑制阈值。 资源配置 训练单元 创建当前训练任务所需的训练单元数量。 订阅提醒 订阅提醒 该功能开启后,系统将在任务状态更新时,通过短信或邮件将提醒发送给用户。 基本信息 名称 训练任务名称。 描述 训练任务描述。
无法在盘古大模型上获得相同的效果。为了充分发挥盘古大模型的潜力,建议根据盘古大模型的特点,单独调整提示词。直接使用在其他大模型上有效的提示词,可能无法在盘古大模型上获得相同的效果。为了充分发挥盘古大模型的潜力,建议根据盘古大模型的特点,单独调整提示词。 父主题: 提示词工程类
训练CV大模型 CV大模型训练流程与选择建议 创建CV大模型训练任务 查看CV大模型训练状态与指标 发布训练后的CV大模型 管理CV大模型训练任务 CV大模型训练常见报错与解决方案 父主题: 开发盘古CV大模型
训练预测大模型 预测大模型训练流程与选择建议 创建预测大模型训练任务 查看预测大模型训练状态与指标 发布训练后的预测大模型 管理预测大模型训练任务 预测大模型训练常见报错与解决方案 父主题: 开发盘古预测大模型
训练NLP大模型 NLP大模型训练流程与选择建议 创建NLP大模型训练任务 查看NLP大模型训练状态与指标 发布训练后的NLP大模型 管理NLP大模型训练任务 NLP大模型训练常见报错与解决方案 父主题: 开发盘古NLP大模型