检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
场景描述 数据商业空间中公司B针对公司A的某些数据资产存在业务需求,由于安全性和数据主权的考虑,公司A与公司B基于TICS完成数据资产的交换。基于TICS进行数据资产交换,保证公司A的数据主权、公司B的数据可获得,同时保证交换过程安全可信。 以下是数据拥有方公司A和数据需求方公司B基于TICS平台的操作。
data_type String 连接器数据类型 1.RDS--云数据库类型 2.MYSQL--MySQL类型 3.DWS--高斯数据库类型 4.MRS--MapReduce数据类型 5.ORACLE--ORACLE数据类型 6.LOCAL_CSV--本地数据类型 ag_dataset_table
获取字段隐私详情 功能介绍 获取空间中已发布数据集字段信息,包括隐私属性 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/datasets/{dataset_id}/schema-info 表1 路径参数
(label)配置为字段类型:INTEGER,字段类别:标签。 图3 配置数据集参数 发布数据集。 图4 发布数据集 数据集发布的过程并不会直接从数据源中导出用户数据,仅从数据源处获取了数据集相关的元数据信息,用于任务的解析、验证等。 父主题: 测试步骤
支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow)的联邦计算; 支持控制流和数据流的分离,用户无
中获取。 “连接器类型”选择RDS服务时,所选择的RDS服务实例需与计算节点在同一VPC下,且端口开放。填写的用户名,需具有数据库的读写权限(参考修改权限)。“密码”为该用户登录RDS实例的密码。 “连接器类型”选择MySql时,需保证计算节点与数据库所在虚机的连通性,“驱动文件
开发数据预处理作业 数据预处理通常被用于评估/训练作业场景。本文以使用训练数据训练预处理作业,然后再将预处理方法应用于评估/预测数据为例进行说明。 训练数据预处理作业 评估/预测数据预处理 前提条件 已提前准备好训练数据,和评估/预测数据。 数据预处理作业选择的结构化数据集(包括
123456 MySQL数据库 IP地址 本地的MySQL数据库的IP地址,且该地址允许可信节点所在虚机通过此IP访问。 1xx.1.1.1 端口 MySQL数据库的端口。 3306 驱动文件 对应数据库版本的驱动文件。 mysql-driver.jar 用户名 访问MySQL数据库的用
弹出发布数据集选择框。 图3 发布数据 在发布数据集选择框中选择需要发布的合作方,单击“发布”,数据就会被同步到对应合作方作业管理的数据集中。数据集创建者默认拥有数据集权限。 图4 发布数据集 如果需要取消合作方的访问权限,需要重新发布数据集,单击“发布”并去勾选该合作方,单击“确认”。
选择数据 首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
准备数据 首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,例如双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float
准备数据 首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集,之后使用每周产生的新数据作为联邦预测的预测集。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串
准备数据 企业A和大数据厂商B需要按照训练模型使用的特征,提供用于预测的数据集,要求预测的数据集特征必须包含训练时使用的特征。 表1 企业A的数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 col0-col4 float 企业A数据特征 industry_predict
准备数据 A方提供了待查询的用户ID数据,样例如下: blacklist_query.csv id 1914fd1aef9346e7a1b0a63c95aa918e 6b86b273ff34fce19d6b804eff5a3f57 66985617b4f74d14b4eceeaa25d61f5e
数据优化 根据统计结果,双方可能会发现存在以下两个问题: 碰撞后的数据总数比较小。 碰撞后的数据分布不太均衡,负样本的比例过高。 这种情况下双方可以重复2-5的步骤更新自己提供的数据,多次执行样本分布统计直至达到比较满意的碰撞结果和分布结果。 至此联邦建模的数据准备阶段完成,接下来就是使用准备好的数据进行联邦建模。
数据集注册管理 数据集列表展示 创建或更新数据集 批量删除数据集 发布数据集到空间 获取数据详情 父主题: 计算节点API
管理数据 数据管理概述 创建连接器 创建数据集 发布数据 数据预处理 父主题: 计算节点管理
准备数据 企业A的实时业务不需要准备数据,在发起查询时通过参数传递需要查询的用户id。 表1 企业B用户画像数据 字段名称 字段类型 描述 id string hash过后的手机号字符串 f0-f4 float 用户数据画像特征 bigdata_all.csv id,f0,f1,f2
终端节点Endpoint 调用空间API时,需要获取TICS服务终端节点Endpoint。 获取终端节点 终端节点(Endpoint)即调用空间API的请求地址,不同服务不同区域的终端节点不同。 可信智能计算服务的终端节点Endpoint构造规则如下,请您根据业务需要选择对应区域的终端节点。
阶段五:基于MPC算法的高安全级别计算 完成demo验证阶段,为提升数据保护级别,接入以纯密文的状态做计算的更高安全级别的数据,可以通过开启高隐私级别开关,提升空间安全级别。 图1 高隐私级别开关 再次单击作业,审批进行的同时敏感数据被进行了秘密分享加密。DAG图显示了“psi + 秘密分享