检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程 > 数据发布 > 发布任务”,单击界面右上角“创建发布任务”。 在“创建发布任务”页面,选择数据集模态,如“气象 > 气象数据”类型的数据集。 图1 选择数据集模态 选择数据集,单击“下一步”。
数据发布是将数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 视频类数据集当前仅支持发布为“标准格式”。 创建视频类数据集发布任务 创建视频类数据集发布任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程
0/24范围的所有节点,都可以访问 /var/docker/hilens 。* 代表所有,即没有限制。也可以填写具体某个节点的IP。 rw:权限设置,可读可写。 anonuid:为映射的匿名用户id,anongid为映射的匿名用户组,也就是挂载进容器后,在容器中看到的文件属主。
在Agent开发平台中,插件是大模型能力的重要扩展。通过模块化方式,插件能够为大模型提供更多专业技能和复杂任务处理能力,使其在多样化的实际场景中更加高效地满足用户需求。 通过插件接入,用户可以为应用赋予大模型本身不具备的能力。插件提供丰富的外部服务接口,当任务执行时,模型会根据提示词感知适用的插件,并自动调
优化包括选择合适的提示词模板、调整提示词的措辞以及结合上下文信息等。精心设计的提示词能够更好地引导模型生成符合预期的输出,尤其在少样本学习场景下,提示词优化的效果尤为显著。 最后还可以通过调整推理参数来进一步提升模型效果,例如通过选择合适的温度系数来控制模型回复的准确性和多样性,
在左侧导航栏中选择“数据工程 > 数据获取”,单击界面右上角“创建导入任务”。 在“创建导入任务”页面选择所需要的“文件内容”、“文件格式”、“导入来源”,并单击“选择路径”上传数据文件。 NLP大模型评测数据集支持的格式见表1。 表1 评测数据集格式 模型类型 评测数据集格式 NLP大模型 文本-单轮问答-jsonl格式
描述 data String stream=true时,执行工作流的消息以流式形式返回。生成的内容以增量的方式逐步发送回来,每个data字段均包含一部分生成的内容,直到所有data返回,响应结束。 表6 流式输出的数据单元 参数 参数类型 描述 event String 数据单元类型,有以下几种类型:
据,确保数据的准确性与一致性,从而提高数据质量,为模型训练提供可靠的输入。 扩展数据集的多样性和泛化能力 在数据量不足或样本不平衡的情况下,数据合成可以生成新数据,扩展数据集的规模和多样性。通过增加数据的多样性,能够提升模型在各种场景下的泛化能力,增强其对未知数据的适应性。 增强模型训练的有效性
来了巨大的挑战。盘古NLP大模型为程序员提供了强大的代码助手,显著提升了研发效率。 盘古大模型能够根据用户给定的题目,快速生成高质量的代码,支持Java、Python、Go等多种编程语言。它不仅能够提供完整的代码实现,还能够根据用户的需求,进行代码补全和不同编程语言之间的改写转化
发布文本类数据集 数据发布是将数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 文本类数据集支持发布的格式为: 标准格式:数据工程功能支持的原始格式。 标准格式的示例如下,其中,context和target是键值对。 {"context": "你好,请介绍自己"
发布图片类数据集 数据发布是将数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 图片类数据集支持发布的格式为: 标准格式:如图1,平台默认的格式。该格式的数据集可发布到资产中,但下游模型开发不可见。 图1 图片类数据集标准格式示例 盘古格式:如图2,训练盘古大
类型、值:选择“引用 > query”。query为开始节点的输出变量值。 在“模型配置”中,选择模型并进行参数配置。 图6 模型配置 在“意图配置”中,填写场景意图。 其中,意图的内容为针对该场景的描述语句或关键词,同时也将作为大模型进行推理和分类的依据,数量为2 ~ 5个。 图7 意图配置
意图识别节点响应意图的准确性。本实践的意图识别节点包含文本翻译意图和其他意图。 文本翻译意图:当用户请求翻译时,意图识别节点的关键任务是准确判断用户翻译的需求,执行翻译节点分支,并给出正确的翻译结果。 如图1,当用户输入翻译类问题时,“意图识别”节点对用户的意图分类为“文本翻译”
Studio大模型开发平台针对视频类数据集预设了一套基础评估标准,涵盖了视频的清晰度、帧率、完整性、标签准确性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建视频类数据集评估任务。 创建视频类数据集评估标准步骤如下:
多个维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建文本类数据集评估任务。 创建文本类数据集评估标准步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程
质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建图片类数据集评估任务。 创建图片类数据集评估标准步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程
确定性预报的输出要素,例如“Surface:U;1000:T;800:?abc”。 可选择的要素参考表8中,提供的高空变量和表面变量。 num_ensembles 否 Long 集合数量。在气象预报中,集合预报是指对初始场加入一定程序的扰动,使其生成一组由不同初始场预报的天气预报结
用于配置大模型的输出多样性。 包含取值: 精确的:模型的输出内容严格遵循指令要求,可能会反复讨论某个主题,或频繁出现相同词汇。 平衡的:平衡模型输出的随机性和准确性。 创意性的:模型输出内容更具多样性和创新性,某些场景下可能会偏离主旨。 自定义:自定义大模型输出的温度和核采样值,生成符合预期的输出。
两种方式,用户可根据需求选择合适的标注方式。数据标注的质量直接影响模型的训练效果和精度。 标注文本类数据集 配比文本类数据集 数据配比是将多个数据集按特定比例组合的过程。通过合理的配比,确保数据集的多样性、平衡性和代表性,避免因数据分布不均而引发的问题。 配比文本类数据集 发布文本类数据集
图5 大模型配置 在“预览调试”的左下角,选择开启“代码解释器”。 在“预览调试”的下方文本框中输入对话,例如“请编写输出10以内的素数的Python代码”,应用将根据对话生成相应的回答。 图6 预览调试结果 单击右上角“调试”,可查看应用的运行结果与调用详情。 图7 调用详情示例