检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用Advisor工具分析生成调优建议 关于Advisor使用及安装过程请参见昇腾社区Gitee。最后生成导出的各类场景的建议包含以下两种: Terminal日志信息的概览建议。 包含Detail信息及修改示例的HTML信息。 按照建议信息做如下修改: 亲和优化器使能,在train
iling采集工具集成到同一个工具中,极大简化了用户的使用流程。建议在迁移过程中使用Tailor工具替代下面列举的原始工具MS Convertor、Benchmark和msprof。使用指导详见AIGC工具tailor使用指导。 模型转换工具 离线转换模型功能的工具MSLite
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
人工固定(硬件随机差异) 工具内部对于随机的控制,是通过设定统一的随机种子进行随机性固定的。但是由于硬件的差异,会导致同样的随机种子在不同硬件上生成的随机数不同。具体示例如下: 由上图可见,torch.randn在GPU和NPU上固定随机种子后,仍然生成不同的随机张量。 对于上述场景
在节点页签,单击选择“配置工具”,弹出该节点的配置工具页面。 在配置工具页面,单击“下载”启动下载任务。当配置工具的状态记录中“工具状态”为“下载完成”时表示下载完成,工具包存放在“下载位置”的目录下。 如果下载失败,单击“下载”可以重新下载。 登录云服务器查看工具包是否下载成功。 在
bectl工具安装在和集群在相同vpc下的某一台机器上。单击kubectl后的“配置”按钮。按照界面提示步骤操作即可。 图3 通过内网使用kubectl工具 通过公网使用kubectl工具,可以将kubectl安装在任一台可以访问公网的机器。 首先需要绑定公网地址,单击公网地址后的“绑定”按钮。
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.910)
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.911)
使用Windows下生成的文本文件时报错找不到路径? 问题现象 当在Notebook中使用Windows下生成的文本文件时,文本内容无法正确读取,可能报错找不到路径。 原因分析 Notebook是Linux环境,和Windows环境下的换行格式不同,Windows下是CRLF,而Linux下是LF。
单模型性能测试工具Mindspore lite benchmark 在模型精度对齐后,针对Stable Diffusion模型性能调优,您可以通过AOE工具进行自助性能调优,进一步可以通过profiling工具对于性能瓶颈进行分析,并针对性的做一些调优操作。 您可以直接使用ben
Tune就是用别人训练好的模型,加上自己的数据,来训练新的模型。相当于使用别人的模型的前几层,来提取浅层特征,然后在最后再落入自己的分类中。 由于一般新训练模型准确率都会从很低的值开始慢慢上升,但是Fine Tune能够在比较少的迭代次数之后得到一个比较好的效果。Fine Tune的好处在于不
使用Msprobe工具分析偏差 观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具进行数据Dump分析。本实验可在train
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
查询onnx模型的输入信息。 # 查询onnx模型的输入信息 t.get_model_input_info() 图1 查询onnx模型的输入输出信息 查询onnx模型的输出信息。 # 查询模型的输出信息 t.get_model_output_info() 图2 查询onnx模型的输出信息
表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。
表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。
表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。