检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。
表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。
表示会生成量化模型权重。不需要生成量化模型权重时,不体现此参数 --generate-scale:体现此参数表示会生成量化系数,生成后的系数保存在--scale-output参数指定的路径下。如果有指定的量化系数,则不需此参数,直接读取--scale-input参数指定的量化系数输入路径即可。
pem密钥(即在创建Notebook实例时创建并保存的密钥对文件)。 单击“Save private key”,保存生成的.ppk文件。.ppk文件的名字可以自定义,例如key.ppk。 图2 将密钥对.pem文件转成.ppk文件 Step3 使用SSH工具连接云上Notebook实例 运行PuTTY。
华为云开发者学堂 华为云EI基于AI和大数据技术,通过云服务的方式提供开放可信的平台。 智能客服 您好!我是有问必答知识渊博的智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为云社区是华为云用户的聚集地。这里有来自ModelArts服务的技术牛人,为您解决技术难题。
(镜像地址详见基础镜像章节)。如果您使用的是ModelArts基础镜像,可先尝试直接使用工具命令,如果相关命令不存在则需要参考工具安装指导自行安装。 表1 ModelArts昇腾迁移调优工具总览表 使用场景 类别 工具名称 工具描述 工具安装 使用指导 PyTorch GPU训练迁移至PyTorch
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
repo_summary中的信息表示调优过程中使用到的知识库算子个数或者追加到知识库的算子个数。 AOE自动调优更多介绍可参考Ascend转换工具功能说明。 自动高性能算子生成工具 自动高性能算子生成工具AKG(Auto Kernel Generator),可以对深度神经网络模型中的算子进行优化
分析能力,详细的操作方式请参见基于advisor的昇腾训练性能自助调优指导。 对于GPU和NPU性能比对、NPU多次训练之间性能比对的场景,昇腾提供了性能比对工具compare_tools,通过对训练耗时和内存占用的比对分析,定位到具体劣化的算子,帮助用户提升性能调优的效率。工具将训练耗时拆分为计算、通信、调度
获取“repo_id”和待上传的文件名。 获取“repo_id” 在AI Gallery页面的资产详情页,单击复制完整的资产名称,如图1所示,获取到的信息即为“repo_id”。例如,复制出的信息为“ur5468675/test_cli_model1”,则该资产的“repo_id”为“u
MindStudio-Insight性能可视化工具使用指导 对于高阶的调优用户,可以使用可视化工具MindStudio Insight查看profiling数据详情并分析可优化点,其提供了丰富的调优分析手段,可视化呈现真实软硬件运行数据,多维度分析性能瓶颈点,支持百卡、千卡及以上规模的可视化集群性能分析,助力开发者天级完成性能调优。
Gallery仓库依次下载除某种格式之外的其他格式的文件到服务器的缓存目录下。 gallery-cli download {repo_id} --exclude "*.json" 如下所示,表示下载除“.json”格式之外的其他格式的文件到服务器的缓存目录“/test”下,当回显“100%”时表示下载完成。
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
Training Tools工具链下精度调试部分的工具包,主要包括精度预检、溢出检测和精度比对等功能,目前适配PyTorch和MindSpore框架。这些子工具侧重不同的训练场景,可以定位模型训练中的精度问题。 精度预检工具旨在计算单个API在整网计算中和标杆场景下的差异,对于无明确精度
使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化,量化方法为per-group。 Step1 模型量化
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel