检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像
环境准备 迁移环境简介 ModelArts开发环境针对推理昇腾迁移的场景提供了云上可以直接访问的开发环境,具有如下优点: 利用云服务的资源使用便利性,可以直接使用到不同规格的昇腾设备。 通过指定对应的运行镜像,可以直接使用预置的、在迁移过程中所需的工具集,且已经适配到最新的版本可以直接使用
创建IAM用户并授权使用MaaS 配置ModelArts委托授权章节中介绍的一键式自动授权方式创建的委托的权限比较大,基本覆盖了依赖服务的全部权限。如果华为云账号已经能满足您的要求,则不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用MaaS服务的功能。 ModelArts
解决方法 参考如下示例进行图片显示。注意opencv加载的是BGR格式, 而matplotlib显示的是RGB格式。
处理方法 增加预测数据行数大于训练作业window超参值。 重建训练作业,修改window超参值。 父主题: 服务预测
处理方法 重新发布数据,切分比例为0.8 或者0.9重新创建训练作业进行训练。 父主题: 训练作业运行失败
处理方法 请您对作业代码进行排查分析,确认是否对训练代码和参数进行过修改。 检查资源分配情况(cpu/mem/gpu/snt9/infiniband)是否符合预期。
处理方法 需要您把CV2包制作为自定义镜像,上传至容器镜像服务(SWR),选择从容器镜像中导入元模型,部署在线服务。如何制作自定义镜像请参考从0-1制作自定义镜像并创建AI应用。 父主题: 服务部署
处理方法 AI应用的端口没有配置,默认为8080,如您在自定义镜像配置文件中修改了端口号,需要在部署AI应用时,配置对应的端口号,使新的AI应用重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。 父主题: 服务部署
处理方法 依赖模块没有导入,需要您在模型推理代码中导入缺失依赖模块。
处理方法 尝试如下代码: X = dataset.iloc[:,:-1].values 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
解决方法 请使用正确的密钥文件进行远程访问,如果本地没有正确的密钥文件或文件已损坏,可以尝试: 登录控制台,搜索“数据加密服务 DEW”,选择“密钥对管理 > 账号密钥对”页签,查看并下载正确的密钥文件。
解决方法 请使用正确的密钥文件进行远程访问,如果本地没有正确的密钥文件或文件已损坏,可以尝试: 登录控制台,搜索“数据加密服务DEW”,选择“密钥对管理 > 账号密钥对”页签,查看并下载正确的密钥文件。
URI GET /v1/{project_id}/images/group 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID,获取方法请参见获取项目ID和名称。
处理方法 请您检查数据是否已标注,或检查数据标注是否符合算法要求。 父主题: 预置算法运行故障
处理方法 建议您按以下步骤排查处理: 确认部署在线服务时是否选择了GPU规格。 在customize_service.py中添加一行代码os.system('nvcc -V)查看该镜像的cuda版本(customize_service.py编写指导请见模型推理代码编写说明)。
处理方法 建议先将Tensorboard文件写到本地,然后再复制回OBS。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
解决方法 参考如下示例进行图片显示。注意opencv加载的是BGR格式, 而matplotlib显示的是RGB格式。
处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器的GPU编号,可以为0,1,2,3等,表明对程序可见的GPU编号。