检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
父主题: 常见错误原因和解决方法
父主题: 常见错误原因和解决方法
处理方法 此问题有两种解决方法: 方法1:使用常用框架自行编码开发模型,支持“多边形”标注的数据集。 方法2:修改数据集,使用矩形标注。然后再启动训练作业。 父主题: 业务代码问题
训练作业排队失败 训练作业开始运行 训练作业运行成功 训练作业运行失败 训练作业被抢占 系统检测到您的作业疑似卡死,请及时前往作业详情界面查看并处理 训练作业已重启 训练作业已被手动终止 训练作业已被终止(最大运行时长:1h) 训练作业已被终止(最大运行时长:3h) 训练作业已被手动删除 计费信息同步结束
charging_mode String 计费模式。 COMMON:同时支持包周期和按需 POST_PAID:按需模式 PRE_PAID:包周期 cloud_server CloudServer object 云服务信息。
charging_mode String 计费模式。 COMMON:同时支持包周期和按需 POST_PAID:按需模式 PRE_PAID:包周期 cloud_server CloudServer object 云服务信息。
获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表4 Apps 参数 是否必选 参数类型 描述 app_id 否 String APP的编号,可通过查询APP列表获取。
父主题: 常见错误原因和解决方法
示例:创建DDP分布式训练(PyTorch+GPU) 本文介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。
解决方法:请修改白名单为本地网络访问IP或者去掉白名单配置。 原因分析二:本地网络不通。 解决方法:检查本地网络以及网络限制。 父主题: VS Code连接开发环境失败故障处理
解决方法:请修改白名单为本地网络访问IP或者去掉白名单配置。 原因分析二:本地网络不通。 解决方法:检查本地网络以及网络限制。 父主题: VS Code连接开发环境失败常见问题
完全使用自定义镜像场景下,指定的“conda env”启动训练方法如下: 由于训练作业运行时不是shell环境,因此无法直接使用“conda activate”命令激活指定的 “conda env”,需要使用其他方式以达成使用指定“conda env”来启动训练的效果。
获取方法请参见获取项目ID和名称。 service_id 是 String API所属的服务ID。 api_id 是 String API编号。
AI Gallery的计算规格的计费说明请参见计算规格说明。 AI应用封面图 否 上传一张AI应用封面图,AI应用创建后,将作为AI应用页签的背景图展示在AI应用列表。建议使用16:9的图片,且大小不超过7MB。 如果未上传图片,AI Gallery会为AI应用自动生成封面。
Alpaca下载地址: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 方法二:使用generate_dataset.py脚本生成数据集方法: generate_dataset.py脚本通过指定输入输出长度的均值和标准差
Alpaca下载地址: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 方法二:使用generate_dataset.py脚本生成数据集方法: generate_dataset.py脚本通过指定输入输出长度的均值和标准差
旧版训练迁移至新版训练需要注意哪些问题? 新版训练和旧版训练的差异主要体现在以下3点: 新旧版创建训练作业方式差异 新旧版训练代码适配的差异 新旧版训练预置引擎差异 新旧版创建训练作业方式差异 旧版训练支持使用“算法管理”(包含已保存的算法和订阅的算法)、“常用框架”、“自定义”(
用户下发训练作业、部署模型、使用开发环境实例等,均可以使用ModelArts提供的公共资源池完成,按照使用量计费,方便快捷。
Alpaca下载地址: https://github.com/tatsu-lab/stanford_alpaca/blob/main/alpaca_data.json 方法二:使用generate_dataset.py脚本生成数据集方法: 客户通过业务数据,在generate_dataset.py
解决方法 方法一(本地):打开命令面板(Windows: Ctrl+Shift+P,macOS:Cmd+Shift+P),搜索“Kill VS Code Server on Host”,选择出问题的实例进行自动清除,然后重新进行连接。