检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
信息,或版本发布生成的Manifest文件等。单击图标选择OBS桶下的空目录,且此目录不能与输入位置一致,也不能为输入位置的子目录。 图1 下载详情 完成参数填写,单击“确定”,自动跳转至AI Gallery个人中心“我的下载”页签,单击按钮,查看下载进度,等待5分钟左右下载完成
信息,或版本发布生成的Manifest文件等。单击图标选择OBS桶下的空目录,且此目录不能与输入位置一致,也不能为输入位置的子目录。 图1 下载详情 完成参数填写,单击“确定”,自动跳转至AI Gallery个人中心“我的下载”页签,单击按钮,查看下载进度,等待5分钟左右下载完成
参数适当减少 offline,是否启动离线模型,使用ppl时必须为True tp_size,使用推理的卡数 max_seq_len,推理的上下文长度,和消耗的显存直接相关,建议稍微高于prompts。其中,mmlu和ceval 建议 3200 另外,在 opencompass/o
ConditionTypeEnum.LTE <= ConditionTypeEnum.NOT != ConditionTypeEnum.OR or 左右值支持的类型有:int、float、str、bool、Placeholder、Sequence、Condition、MetricInfo。
API,进行推理业务的适配,并且在构建模型时,通过上下文的参数来确定运行时的具体配置,例如运行后端的配置等。下文以Python接口为例。 使用MindSpore Lite推理框架执行推理并使用昇腾后端主要包括以下步骤: 创建运行上下文:创建Context,保存需要的一些基本配置参数
mindspore_lite as mslite import numpy as np from PIL import Image # 设置目标设备上下文为Ascend,指定device_id为0。 context = mslite.Context() context.target = ["ascend"]
单机单卡:小数据量(1G训练数据)、低算力场景(1卡Vnt1),存储方案使用“OBS的并行文件系统(存放数据和代码)”。 单机多卡:中等数据量(50G左右训练数据)、中等算力场景(8卡Vnt1),存储方案使用“SFS(存放数据和代码)”。 多机多卡:大数据量(1T训练数据)、高算力场景(4台
单机单卡:小数据量(1G训练数据)、低算力场景(1卡Vnt1),存储方案推荐使用“OBS的并行文件系统(存放数据和代码)”。 单机多卡:中等数据量(50G左右训练数据)、中等算力场景(8卡Vnt1),存储方案推荐使用“SFS(存放数据和代码)”。 多机多卡:大数据量(1T训练数据)、高算力场景(
数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数 max_seq_len,推理的上下文长度,和消耗的显存直接相关,建议稍微高于prompts。其中,mmlu和ceval 建议 3200 另外,在 opencompass/o
数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数 max_seq_len,推理的上下文长度,和消耗的显存直接相关,建议稍微高于prompts。其中,mmlu和ceval 建议 3200 另外,在 opencompass/o
数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数 max_seq_len,推理的上下文长度,和消耗的显存直接相关,建议稍微高于prompts。其中,mmlu和ceval 建议 3200 另外,在 opencompass/o
参数适当减少 offline,是否启动离线模型,使用ppl时必须为True tp_size,使用推理的卡数 max_seq_len,推理的上下文长度,和消耗的显存直接相关,建议稍微高于prompts。其中,mmlu和ceval 建议 3200 另外,在 opencompass/o
数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数 max_seq_len,推理的上下文长度,和消耗的显存直接相关,建议稍微高于prompts。其中,mmlu和ceval 建议 3200 另外,在 opencompass/o
ml/onnx_models”。执行推理脚本进行测试,此处使用的推理硬件是CPU。由于CPU执行较慢,验证待迁移的代码可能需要大约15分钟左右才能完成。 cd modelarts-ascend/examples/AIGC/stable_diffusion # 必须执行该命令,否则
数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数 max_seq_len,推理的上下文长度,和消耗的显存直接相关,建议稍微高于prompts。其中,mmlu和ceval 建议 3200 另外,在 opencompass/o
数量,可配合后面的参数适当减少 offline,是否启动离线模型,使用 ppl 时必须为 True tp_size,使用推理的卡数 max_seq_len,推理的上下文长度,和消耗的显存直接相关,建议稍微高于prompts。其中,mmlu和ceval 建议 3200 另外,在 opencompass/o
CORE上。 图8 替换后耗时 ArgMin算子优化 ArgMin在CANN 6.3 RC2版本上算子下发到AICPU执行,在CANN 7.0RC1上下发到AI_CORE上边执行。出现此类情形建议升级CANN包版本。 在shape大小是 (1024, 1024) 的tensor上测试,结果如下:CANN
参数。根据SFS Turbo存储位置的权限显示“读写”或“只读”。 选择“对象存储服务OBS”或“并行文件系统PFS”作为存储位置。 选择“存储位置”:设置用于存储Notebook数据的OBS路径。如果想直接使用已有的文件或数据,可将数据提前上传至对应的OBS路径下。“存储位置”
LoRA微调:冻结原模型,通过往模型中加入额外的网络层,并只训练这些新增的网络层参数,效果接近或略差于全参训练,收敛速度快,训练时间短。 增量预训练:在现有预训练模型基础上,利用新数据或特定领域的数据增强模型的能力和性能。允许模型逐步适应新的任务和数据,避免过拟合和欠拟合问题,进一步提高模型的泛化能力。
视频:对视频类数据进行处理,支持.mp4格式,支持用户进行视频标注。 自由格式:管理的数据可以为任意格式,目前不支持标注,适用于无需标注或开发者自行定义标注的场景。如果您的数据集需存在多种格式数据,或者您的数据格式不符合其他类型数据集时,可选择自由格式的数据集。 表格 表格:适