检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
不同机型的对应的软件配套版本 由于弹性集群资源池可选择弹性裸金属或弹性云服务器作为节点资源,不同机型的节点对应的操作系统、适用的CCE集群版本等不相同,为了便于您制作镜像、升级软件等操作,本文对不同机型对应的软件配套版本做了详细介绍。 裸金属服务器的对应的软件配套版本 表1 裸金属服务器
按需计费 按需计费是一种先使用再付费的计费模式,适用于无需任何预付款或长期承诺的用户。本文将介绍按需计费资源的计费规则。 适用场景 按需计费适用于资源需求波动的场景,例如面向ToC业务的AIGC推理场景,客户业务量会随时间有规律的波动,按需计费模式能大幅降低客户的业务成本。可在运
ma-cli image镜像构建支持的命令 ma-cli image命令支持:查询用户已注册的镜像、查询/加载镜像构建模板、Dockerfile镜像构建、查询/清理镜像构建缓存、注册/取消注册镜像、调试镜像是否可以在Notebook中使用等。具体命令及功能可执行ma-cli image
Ascend-vLLM介绍 Ascend-vLLM概述 vLLM是GPU平台上广受欢迎的大模型推理框架,因其高效的continuous batching和pageAttention功能而备受青睐。此外,vLLM还具备投机推理和自动前缀缓存等关键功能,使其在学术界和工业界都得到了广泛应用。
数据标注场景介绍 由于模型训练过程需要大量有标签的数据,因此在模型训练之前需对没有标签的数据添加标签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 ModelArts为用户提供了标注数据的能力:
在JupyterLab中使用MindInsight可视化作业 ModelArts支持在开发环境中开启MindInsight可视化工具。在开发环境中通过小数据集训练调试算法,主要目的是验证算法收敛性、检查是否有训练过程中的问题,方便用户调测。 MindInsight能可视化展现出训
在JupyterLab中使用TensorBoard可视化作业 ModelArts支持在开发环境中开启TensorBoard可视化工具。TensorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。 TensorBoard是一个可视化工具,能够
配置节点参数控制分支执行 功能介绍 支持单节点通过参数配置或者获取训练输出的metric指标信息来决定执行是否跳过,同时可以基于此能力完成对执行流程的控制。 应用场景 主要用于存在多分支选择执行的复杂场景,在每次启动执行后需要根据相关配置信息决定哪些分支需要执行,哪些分支需要跳过
示例:创建DDP分布式训练(PyTorch+NPU) 本文介绍了使用训练作业的自定义镜像+自定义启动命令来启动PyTorch DDP on Ascend加速卡训练。 前提条件 需要有Ascend加速卡资源池。 创建训练作业 本案例创建训练作业时,需要配置如下参数。 表1 创建训练作业的配置说明
使用ModelArts Standard一键完成商超商品识别模型部署 ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。
创建自动模型优化的训练作业 背景信息 如果用户使用的AI引擎为pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64和tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64,并且优化
ModelArts Standard推理服务访问公网方案 本章节提供了推理服务访问公网的方法。 应用场景 推理服务访问公网地址的场景,如: 输入图片,先进行公网OCR服务调用,然后进行NLP处理; 进行公网文件下载,然后进行分析; 分析结果回调给公网服务终端。 方案设计 从推理服
已有镜像迁移至ModelArts用于训练模型 场景描述 本地已有镜像,需要做云上适配,用于ModelArts模型训练。 操作步骤 参考如下Dockerfile,修改已有镜像,使其符合模型训练的自定义镜像规范。 FROM {已有镜像} USER root # 如果已存在 gid
创建Workflow数据集标注节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的标注功能。数据集标注节点主要用于创建标注任务或对已有的标注任务进行卡点标注,主要用于需要对数据进行人工标注的场景。 属性总览 您可以使用LabelingStep来构建数据集标注节点,LabelingStep结构如下:
VS Code一键连接Notebook 视频介绍 前提条件 已经创建Notebook实例 ,实例已经开启SSH连接,实例状态为运行中。 请参考创建Notebook实例。 实例的密钥文件已经下载至本地的如下目录或其子目录中: Windows:C:\Users\{{user}} Mac/Linux:
开发用于预置框架训练的代码 当您使用ModelArts Standard提供的预置框架创建算法时,您需要提前完成算法的代码开发。本章详细介绍如何改造本地代码以适配ModelArts上的训练。 创建算法时,您需要在创建页面提供代码目录路径、代码目录路径中的启动文件、训练输入路径参数
在ModelArts Standard上运行GPU单机多卡训练作业 操作流程 准备工作: 购买服务资源(VPC、SFS、SWR和ECS) 配置权限 创建专属资源池(打通VPC) 在ECS服务器挂载SFS Turbo存储 在ECS中设置ModelArts用户可读权限 安装和配置OBS命令行工具
Cluster资源池节点故障如何定位 故障说明和处理建议 图1 Lite池故障处理流程 对于ModelArts Lite资源池,每个节点会以DaemonSet方式部署node-agent组件,该组件会检测节点状态,并将检测结果写到K8S NodeCondtition中。同时,节点
使用预置镜像制作自定义镜像用于训练模型 使用预置框架构建自定义镜像原理介绍 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面
配置多分支节点数据 功能介绍 仅用于存在多分支执行的场景,在编写构建工作流节点时,节点的数据输入来源暂不确定,可能是多个依赖节点中任意一个节点的输出。只有当依赖节点全部执行完成后,才会根据实际执行情况自动获取有效输出作为输入。 使用案例 from modelarts import