检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
d同时出现。 pool_id 是 String 专属资源池ID。可在ModelArts管理控制台,单击左侧“专属资源池”,在专属资源池列表中查看资源池ID。创建专属池作业时,pool_id必选,且不能与spec_id同时出现。 engine_id 是 Long 训练作业选择的引擎
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
训练作业的版本数。 请求示例 如下以查询训练作业状态为7,每页展示10条记录,指定到第1页,按照“job_name”排序并递增排列,查询作业名字中包含job的所有训练作业数据为例。 GET https://endpoint/v1/{project_id}/training-jobs
print(model_object_list) 参数说明 查询模型列表,返回list,list大小等于当前用户所有已经部署的模型个数, list中每个元素都是Model对象,对象属性和查询模型详情相同。查询模型列表返回说明: model_list = [model_instance1,
专属资源池的费用请参考专属资源池计费项。 - - 存储资源 对象存储OBS 用于存储模型训练的输入和输出数据。 具体费用可参见对象存储价格详情。 注意: 存储到OBS中的数据需在OBS控制台进行手动删除。如果未删除,则会按照OBS的计费规则进行持续计费。 按需计费 包年/包月 创建桶不收取费用,按实际使用的存储容量和时长收费
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
save_pretrained("CodeLlama-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用perg
照版本配套关系使用本文档。 资源规格推荐使用“西南-贵阳一”Region上的Lite k8s Cluster和昇腾Snt9B资源。 本文档中的CCE集群版本选择v1.27~1.28。版本使用的容器引擎为Containerd。 推理部署使用的服务框架是vLLM。vLLM支持v0.6
print(predictor_object_list) 参数说明 查询服务列表,返回list,list大小等于当前用户所有已经部署的服务个数,list中每个元素都是Predictor对象,对象属性同本章初始化服务。 查询服务列表返回说明:service_list_resp = [service_instance1
job_id Long 可视化作业的ID。 resource_id String 可视化作业的计费资源ID。 请求示例 如下以查询正在部署中的作业,按递增排序,显示第1页前10个可视化作业为例。 GET https://endpoint/v1/{project_id}/visualization-jobs
例如(--param_a=3,--param_b=4)默认为空,非必填" mrs_outputs_description = "数据输出路径, 可以通过从参数列表中获取--train_url参数获取" cluster_id_description = "cluster id of MapReduce Service"
表2 请求参数 参数 是否必选 参数类型 说明 job_name 是 String 训练作业名称。限制为1-64位只含数字、字母、下划线和中划线的名称。 job_desc 否 String 对训练作业的描述,默认为“NULL”,字符串的长度限制为[0, 256]。 config 是