检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,并在Notebook环境中运行执行。用户可通过Notebook中创建.ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox
备用系统,维持模型训练不中断,保护长期项目免受时间与资源损耗,确保进展与收益。 大模型应用开发,帮助开发者快速构建智能Agents 在企业中,项目级复杂任务通常需要理解任务并拆解成多个问题再进行决策,然后调用多个子系统去执行。MaaS基于多个优质昇腾云开源大模型,提供优质Prom
志文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程中,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 500 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务 plot_loss
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step5 进入容器安装推理依赖软件步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_too
文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程中,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 5000 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务 plot_loss
权重。量化后的权重包括原始权重和kvcache的scale系数。 抽取kv-cache量化系数。 该步骤的目的是将步骤1中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供: python3 examples/fp8/extract_scales
权重,分配到此模型的流量权重。 specification String 资源规格。 instance_count Integer 模型部署的实例数。 envs Map<String, String> 运行模型需要的环境变量键值对。 表4 result结构 参数 参数类型 描述 node_id
置错误。当用户的NCCL版本低于2.14时,则需要手动设置NCCL_SOCKET_IFNAME环境变量。 处理方法 针对原因1,需要在代码中补充如下环境变量。 import os os.environ["NCCL_IB_TC"] = "128" os.environ["NCCL_IB_GID_INDEX"]
用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改数据集文本字段的名称,默认为text。在维基百科数据集中,它有四列,分别是i
静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在Step4 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,切换一个conda环境。
目前性能测试已经支持投机推理能力。 静态benchmark验证 本章节介绍如何进行静态benchmark验证。 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,运行静态benchmark验证。
当前任务是否是该版本的同类型任务中的最新任务。 name String 数据处理任务名称。 result Object 数据处理任务输出的结果,status为2时会出现该字段,用于特征分析任务。 status Integer 数据处理的状态。可选值如下: 0:初始化 1:运行中 2:已完成 3:失败
ReleaseDatasetStep 属性 描述 是否必填 数据类型 name 数据集版本发布节点的名称,命名规范(只能包含英文字母、数字、下划线(_)、中划线(-),并且只能以英文字母开头,长度限制为64字符),一个Workflow里的两个step名称不能重复 是 str inputs 数据集版本发布节点的输入列表
创建分布式并行模型,每个进程都会有相同的模型和参数。 创建数据分发Sampler,使每个进程加载一个mini batch中不同部分的数据。 网络中相邻参数分桶,一般为神经网络模型中需要进行参数更新的每一层网络。 每个进程前向传播并各自计算梯度。 模型某一层的参数得到梯度后会马上进行通讯并进行梯度平均。
{config_name} 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 config_name 是 String 训练作业参数的名称。 请求消息 无请求参数。 响应消息
n_id}/aom-log 参数说明如表1所示。 表1 路径参数 参数 是否必选 参数类型 说明 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 job_id 是 Long 训练作业的ID。 version_id 是 Long 训练作业的版本ID。
00:00(北京时间)将AI开发平台ModelArts自动学习模块正式下线。 下线范围 下线区域:华为云全部Region 下线影响 正式下线后,所有用户将无法使用自动学习模块创建项目,但仍可在Workflow模块查看、使用历史创建的自动学习作业。 如您有任何问题,可随时通过工单或者服务热线
功能描述 阶段 相关文档 1 Notebook连接大数据服务特性 介绍如何将ModelArts Notebook开发环境与华为云大数据服务DLI中的Spark引擎相连接,让数据工程师能便捷地使用Notebook进行大数据开发,以及如何在DataArts Studio服务配置Notebook文件定时调度任务。
runtime没有找到。 处理方法 建议您按以下步骤排查处理: 确认部署在线服务时是否选择了GPU规格。 在customize_service.py中添加一行代码os.system('nvcc -V)查看该镜像的cuda版本(customize_service.py编写指导请见模型推理代码编写说明)。
建议先将Tensorboard文件写到本地,然后再复制回OBS。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接