检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
时序路径分析(Temporal Paths) 概述 时序路径分析算法(Temporal Paths)区别于静态图上的路径分析,结合了动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边,呈现时间递增(或非减)性。 时序路径不满足传递性:即从节点i到节点j有一条时
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数
表3 obsParameters参数说明 参数 是否必选 类型 说明 accessKey 是 String 用户的accessKey。 secretKey 是 String 用户的secretKey。 表4 vertex、edge参数说明 参数 是否必选 类型 说明 label 是 String
"indexProperty": ["userid"] } ] } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 响应示例 状态码: 200 成功响应示例 Http Status Code: 200 { "jobId":
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness
三角计数算法(Triangle Count) 概述 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 适用场景 三角计数算法(Triangle Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选
中介中心度算法(Betweenness Centrality) 概述 中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控、交通路网、城市规划等领域
"typeNameCount": "2", "dataType": "enum" } } ] } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 响应示例 状态码: 200 成功响应示例 Http Status Code: 200 { "result":
lse, 默认为false。 false:会查询图实例2分钟内的指标。 true:会查询实时监控指标,请求响应在3-5秒之间。 with_performance_metrics 否 Boolean 是否查询性能指标,会返回图实例性能指标和各个节点的指标。取值为true或者fals
"ignoreLabel": false }, "createNotExists": false } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 样例中,若假设点666和777不在原图中,则创建666和777两个点,且label为默认值,之后再添加边。
lse, 默认为false。 false:会查询图实例2分钟内的指标。 true:会查询实时监控指标,请求响应在3-5秒之间。 with_performance_metrics 否 Boolean 是否查询性能指标,会返回图实例性能指标和各个节点的指标。取值为true或者fals
度数关联度算法(Degree Correlation) 概述 度数关联度算法(Degree Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。
"predicate":"=", "values":["18-24"] } ] } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 vertexFilters样例1 [ { "propertyName":"Gender",
点集最短路(Shortest Path of Vertex Sets) 概述 点集最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的最短路径。 适用场景 点集最短路算法(Shortest Path of Vertex Sets)适用于互联
边中介中心度(Edge-betweenness Centrality) 概述 边中介中心度算法(Edge-betweenness Centrality)以经过某条边的最短路径数目来刻画边重要性的指标。 适用场景 同betweenness类似,可用作关键关系的发掘;适用于社交、金融风控、交通路网、城市规划等领域
点集共同邻居(Common Neighbors of Vertex Sets) 概述 点集共同邻居(Common Neighbors of Vertex Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场
"target": "27661363_山庄温泉" } ], "ignoreError": true } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 请求参数 表2 Body参数说明 参数 是否必选 类型 说明 edges 是 Object 待删除的边数组。
"target": "27661363_山庄温泉" } ], "ignoreError": true } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 请求参数 表2 Body参数说明 参数 是否必选 类型 说明 edges 是 Object 待删除的边数组。
"popularity" ] } ] } } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 响应示例 状态码: 200 成功响应示例 Http Status Code: 200 { "result":"success"