检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
score 否 Float 置信度,取值范围为[0,1] type 否 Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容
type String 标注类型。 id String 标注ID。 annotation_loc String 标注文件的云存储路径,对于物体检测是必选字段,对于其他类型是可选字段。 annotation_property String 标注属性。 confidence Double
"quota" : 10, "min_quota" : -1, "name_cn" : "自动学习(图像分类、物体检测、声音分类)训练时长", "unit_cn" : "分钟", "name_en" : "ExeMLtraining duration
label_name 否 String 标签名。 label_type 否 Integer 标注类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组 200:声音分类 201:语音内容 202:语音分割 400:表格数据集
图1 训练输出设置 断点续训练建议和训练容错检查(即自动重启)功能同时使用。在创建训练作业页面,开启“自动重启”开关。训练环境预检测失败、或者训练容器硬件检测故障、或者训练作业失败时会自动重新下发并运行训练作业。 PyTorch版reload ckpt PyTorch模型保存有两种方式。
project_type 否 Integer 项目类型。默认为“0”。 0:非自动学习项目。 1:自动学习,图像分类。 2:自动学习,物体检测。 3:自动学习,预测分析。 请求消息 无请求参数。 响应消息 响应参数如表3所示。 表3 响应参数 参数 参数类型 说明 is_success
score 否 Float 置信度,取值范围为[0,1] type 否 Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容
开启预检,0表示关闭预检。 推荐开启预检,预检可提前发现节点故障、驱动故障。 “1” 表8 卡死检测相关环境变量 变量名 说明 示例 MA_HANG_DETECT_TIME 卡死检测时间。在这段时间内IO无变化则判定为任务卡死。 取值范围:10~720 单位:分钟 默认值:30 “30”
"quota" : 20, "min_quota" : -1, "name_cn" : "自动学习(图像分类、物体检测、声音分类)训练时长", "unit_cn" : "分钟", "name_en" : "ExeML training duration
样本标签的属性键值对,如物体形状、形状特征等。 score Float 置信度,取值范围为[0,1] type Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容
确定目的 在开始AI开发之前,必须明确要分析什么?要解决什么问题?商业目的是什么?基于商业的理解,整理AI开发框架和思路。例如,图像分类、物体检测等等。不同的项目对数据的要求,使用的AI开发手段也是不一样的。 准备数据 数据准备主要是指收集和预处理数据的过程。 按照确定的分析目的,有
为null表示不根据值搜索,否则搜索的值满足列表中任意一个即可。 type Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容
样本标签的属性键值对,如物体形状、形状特征等。 score Float 置信度,取值范围为[0,1] type Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容
样本标签的属性键值对,如物体形状、形状特征等。 score Float 置信度,取值范围为[0,1] type Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容
内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
内置属性:标签展示的颜色,为色彩的16进制代码,默认为空。例如:“#FFFFF0”。 @modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。
样本标签的属性键值对,如物体形状、形状特征等。 score Float 置信度,取值范围为[0,1] type Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容
ull表示不根据值搜索,否则搜索的值满足列表中任意一个即可。 type 否 Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容
和简单操作即可完成模型训练和部署。 当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的定制化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。
为null表示不根据值搜索,否则搜索的值满足列表中任意一个即可。 type Integer 标签类型。可选值如下: 0:图像分类 1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容