检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制。在训练和推理过程中,通过数据脱敏、隐私计算等技术手段
打造短视频营销文案创作助手 场景介绍 随着互联网的发展,短视频已成为了日常生活中不可或缺的一部分,凭借其独特的形式和丰富的内容吸引了大量流量,并为企业和个人提供了一个全新的营销平台。短视频用户希望借助大模型快速生成高质量的口播文案,以提升营销效果和效率。在这种场景下,用户只需提供
业客服智能问答场景等。 下面将以一个具体的政务问答助手为例进行说明。该场景通过收集政务问答数据和相关政务问答文档,基于检索增强问答框架,构建了一个智能化的政务问答助手。 图1 政务问答智能助手整体框架 上图给出了政务问答智能助手的整体框架。该框架由query改写模块、中控模块、检索模块和问答模块组成:
使用盘古NLP大模型创建Python编码助手应用 场景描述 该示例演示了如何使用盘古NLP大模型创建Python编码助手执行应用,示例将使用Agent开发平台预置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用
据,以及身份账号和密钥管理等方面的安全配置。 《华为云安全白皮书》详细介绍华为云安全性的构建思路与措施,包括云安全战略、责任共担模型、合规与隐私、安全组织与人员、基础设施安全、租户服务与租户安全、工程安全、运维运营安全、生态安全。 图1 华为云安全责任共担模型 父主题: 安全
单个文件大小不超过50GB,文件数量最多1000个,示例如下所示: 异常检测 图片+txt 文件存放方式要求满足异常检测格式,即标注文件和图片存于同一文件夹,正常和异常分文件夹创建。 图片支持jpg、jpeg、png、bmp格式,标注文件为txt格式,标注文件说明请参见异常检测数据集标注文件说明。 单个文件大小不超
集格式要求、其他类数据集格式要求。 表1 训练CV大模型数据集类型要求 基模型 训练场景 文件内容 文件格式 盘古-CV-物体检测-N 微调 图片+检测标注 图片+xml 训练CV大模型所需数据量 初期启动训练时,每种模型类别先提供1000张已标注的图片数据进行训练,后续根据验证结果再动态提供数据迭代。
当前,基于Agent开发平台可以构建两种类型的应用,一种是针对文本生成、文本检索的知识型Agent,如搜索问答助手、代码生成助手等,执行主体在大模型;另一种是针对复杂工作流场景的流程型Agent,如金融分析助手、网络检测助手等。 知识型Agent:以大模型为任务执行核心,用户通过配置Prompt、知识库等信
-N-2.1.0 该模型属于物体检测模型,旨在识别图像中的所有感兴趣目标,定位其位置并确定其类别。适用于各种任务,如:积水检测、占道经营检测、人员离岗检测、动植物检测、工业缺陷检测等。 2024年12月发布的版本,支持全量微调、在线推理。 物体检测-N模型为中参数量模型,在保证计
从基模型训练出行业大模型 打造短视频营销文案创作助手 打造政务智能问答助手 基于NL2JSON助力金融精细化运营
致不稳定的学习过程。 锚框的长边和短边的比例 定义检测物体锚框的长宽比。通过设置不同的长短比例,模型可以更好地适应多种尺寸和形状的物体。 锚框大小 指锚框的初始尺寸。锚框是物体检测中的一个关键概念,通过合理设置,可以帮助模型检测出多种尺寸的目标。 框重叠比例阈值 用于判定模型预测
、数据评估、数据配比、数据流通和管理等功能。 该工具链能够高效收集和处理各种格式的数据,满足不同训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。
Pangu-Predict-Table-Anom-2.0.0 该模型属于异常检测模型,用于识别数据集中的异常或离群点,常应用于安全、质量控制等领域。 矿山行业:进行设备故障检测,例如监控设备运行数据,识别异常行为,防止设备故障。 电力行业:进行电网异常检测,例如监控电网运行状态,识别异常情况,防止电网故障。
有图片需保存为tar包。 QA对格式支持:jsonl 物体检测 图片格式支持:jpg、jpeg、png、bmp 标注格式支持:xml 图像分类 图片格式支持:jpg、jpeg、png、bmp 标注格式支持:txt 异常检测 图片格式支持:jpg、jpeg、png、bmp 标注格式支持:txt
{"system":"你是一个机智幽默问答助手","context":"你好,请介绍自己","target":"哈哈,你好呀,我是你的聪明助手。"} csv格式:csv文件的第一列对应system,第二三列分别对应context、target。 "你是一个机智幽默问答助手","你好,请介绍自己","哈哈,你好呀,我是你的聪明助手。"
程的编排。 工作流包含两种类型: 对话型工作流。面向多轮交互的开放式问答场景,基于用户对话内容提取关键信息,输出最终结果。适用于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容直接输出结果,无中间的对话交互过程。适用于内容生成、批量翻译、数据分析等场景。
加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设置为“你是一个旅游助手,需要给用户介绍旅行地的风土人情。请介绍下{{location}}的风土人情。”在评估提示词效果时,可以通过批量替换{{location}}的值,来获得模型回答,提升评测效率。
精准率 精准率是指在模型预测为正类的样本中,真正类样本的比例。数值越高,表明模型在检测正类样本时的准确性越高。 召回率 召回率是指在所有实际为正类的样本中,被模型正确预测为正类的比例。数值越高,表明模型在检测正类样本时的全面性越高。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。
在Agent开发平台上,用户可以构建两种类型的应用: 知识型Agent:以大模型为任务执行核心,适用于文本生成和文本检索任务,如搜索问答助手、代码生成助手等。用户通过配置Prompt、知识库等信息,使得大模型能够自主规划和调用工具。 优点:零代码开发,对话过程智能化。 缺点:大模型在面
精准率 精准率是指在模型预测为正类的样本中,真正类样本的比例。数值越高,表明模型在检测正类样本时的准确性越高。 召回率 召回率是指在所有实际为正类的样本中,被模型正确预测为正类的比例。数值越高,表明模型在检测正类样本时的全面性越高。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。