检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表1 ModelArts系统策略 策略名称 描述 类型 ModelArts FullAccess ModelArts管理员用户,拥有所有ModelArts服务的权限 系统策略 ModelArts CommonOperations ModelArts操作用户,拥有所有ModelArts
用户在创建AI Gallery工具链服务选择付费资源时,可以查看到付费资源的单价,在使用过程中,该资源可能由于平台的折扣优惠变化导致单价发生变化,而云服务是先使用后通过话单进行记录,计费会存在延时,因此,实际价格和折扣优惠可能与当前询价会不完全相同,请以真正计费的价格和优惠为准。
查询数据集导出任务列表 创建数据集导出任务 查询数据集导出任务的状态 同步数据集 查询数据集同步任务的状态 查询智能标注的样本列表 查询单个智能标注样本的信息 分页查询智能任务列表 启动智能任务 获取智能任务的信息 停止智能任务 查询处理任务列表 创建处理任务 查询数据处理的算法类别
您填写的邮箱地址将被记录并保存在ModelArts中,仅用于ModelArts团队标注功能,当成员删除后,其填写的邮箱信息也将被一并删除。 其中,“角色”支持“Labeler”、“Reviewer”和“Team Manager”,“Team Manager”只能设置为一个人。
quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer.save_pretrained("CodeLlama-34b-hf") # if quantized with device_map set quantized_model.to
quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer.save_pretrained("CodeLlama-34b-hf") # if quantized with device_map set quantized_model.to
quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer.save_pretrained("CodeLlama-34b-hf") # if quantized with device_map set quantized_model.to
quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer.save_pretrained("CodeLlama-34b-hf") # if quantized with device_map set quantized_model.to
1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。
1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。
quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer.save_pretrained("CodeLlama-34b-hf") # if quantized with device_map set quantized_model.to
quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer.save_pretrained("CodeLlama-34b-hf") # if quantized with device_map set quantized_model.to
quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer.save_pretrained("CodeLlama-34b-hf") # if quantized with device_map set quantized_model.to
quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer.save_pretrained("CodeLlama-34b-hf") # if quantized with device_map set quantized_model.to
quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer.save_pretrained("CodeLlama-34b-hf") # if quantized with device_map set quantized_model.to
quantized_model.save_pretrained("CodeLlama-34b-hf") tokenizer.save_pretrained("CodeLlama-34b-hf") # if quantized with device_map set quantized_model.to
1、在容器中使用ma-user用户, vLLM使用transformers版本与awq冲突,需要切换conda环境,运行以下命令下载并安装AutoAWQ源码。
ASCEND_PROCESS_LOG_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/plog 保存训练过程中记录的程序堆栈信息日志 PLOG 文件。
ASCEND_PROCESS_LOG_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/plog 保存训练过程中记录的程序堆栈信息日志 PLOG 文件。
ASCEND_PROCESS_LOG_PATH /home/ma-user/ws/llm_train/AscendSpeed/saved_dir_for_output/plog 保存训练过程中记录的程序堆栈信息日志 PLOG 文件。