检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备环境 本文档中的模型运行环境是ModelArts Lite的Cluster。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备环境 本文档中的模型运行环境是ModelArts Lite的Cluster。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
准备环境 本文档中的模型运行环境是ModelArts Lite的Cluster。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 支持的模型列表和权重文件 本方案支持vLLM的v0.6.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化
Snt9B开展SD3-模型的训练过程。 资源规格要求 推荐使用“西南-贵阳一”Region上的DevServer资源和Ascend Snt9B单机。 表1 环境要求 名称 版本 driver 23.0.6 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 模型参数量 训练类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed)
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
型输出进行可对比的误差分析(精度)。 模型自动调优工具 AOE(Ascend Optimization Engine)是一个昇腾设备上模型运行自动调优工具,作用是充分利用有限的硬件资源,以满足算子和整网的性能要求。在推理场景下使用,可以对于模型的图和算子运行内置的知识库进行自动优化,以提升模型的运行效率。
ModelArts的AI Gallery中提供了大量免费的模型供用户一键部署,进行AI体验学习。 本文以“商超商品识别”模型为例,完成从AI Gallery订阅模型,到ModelArts一键部署为在线服务的免费体验过程。 “商超商品识别”模型可以识别81类常见超市商品(包括蔬菜、水果和饮品)
LoRA(Low-Rank Adaptation)是一种适用于大模型的轻量化微调技术方法。原理是通过在模型层中引入低秩矩阵,将大模型的权重降维处理,来实现高效的模型适配。相比于传统的微调方法,LoRA不仅能大幅减少所需的训练参数,还降低了显存和计算成本,加快了模型微调速度。对于VLLM来说,使用LoRA进行多任务部署具有以下优势:
NPU训练指导 Open-Clip广泛应用于AIGC和多模态视频编码器的训练。 方案概览 本方案介绍了在ModelArts的DevServer上使用昇腾NPU计算资源开展Open-clip训练的详细过程。完成本方案的部署,需要先联系您所在企业的华为方技术支持购买DevServer资源。 本方案目前仅适用于企业客户。
第一条命令为安装Linux内核头文件和内核镜像,其中版本为5.4.0-144-generic。 第二条命令为重新生成GRUB引导程序的配置文件,用于在启动计算机时加载操作系统, 命令将使用新安装的内核镜像更新GRUB的配置文件,以便在下次启动时加载新的内核。 父主题: Lite Server
相对于之前demo.sh方式启动(历史版本)的启动方式,本章节新增了通过benchmark工具启动训练的方式。此方式训练完成后json日志或打屏日志直接打印性能结果,免于计算,方便用户验证发布模型的质量。并且新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根据自己实际需求进行修改。
Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展Flux模型的训练过程,包括基于kohya的Fintune训练和基于ai-toolkit的Lora训练。
表示配置模型推理代码需要的依赖包,需要提供依赖包名、安装方式和版本约束的信息,详细参数见模型配置文件编写说明。导入模型时,模型配置文件中的安装包依赖参数“dependencies”如何编写? 解决方案 安装包存在前后依赖关系。例如您在安装“mmcv-full”之前,需要完成“Cy
准备环境 本文档中的模型运行环境是ModelArts Lite的Cluster。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
Snt9B开展Flux模型的FLUX.1-dev版本分别使用ComfyUI 0.2.2和Diffusers 0.30.2框架的推理过程。另外,FLUX.1-schnell模型的使用方法和FLUX.1-dev一致,只需替换权重文件即可,本文以FLUX.1-schn为例。 约束限制 本方案目前仅适用于企业客户。