检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
付费资源(如计算规格、OBS桶)、等都将被冻结,资源进入保留期。保留期的资源不支持任何操作。如果用户在宽限期内充值,则华为云会自动扣取欠费金额(含宽限期内产生的费用) 保留期到期时仍未支付欠款(含宽限期内产生的费用),则付费资源将释放,数据无法恢复。 宽限期和保留期的详细规则请参见宽限期保留期。
通过在靠近终端设备的地方建立边缘节点,将云端计算能力延伸到靠近终端设备的边缘节点,从而解决上述问题。 智能边缘平台(Intelligent EdgeFabric)通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满足客户对边缘计算资源的远程管控、数据处理、分析决策、智能化的诉求。
ModelArts自动学习与ModelArts PRO的区别是什么? ModelArts自动学习,提供了AI初学者,零编码、零AI基础情况下,可使用自动学习功能,开发用于图像分类、物体检测、预测分析、文本分类、声音分类等场景的模型。 而ModelArts PRO是一款为企业级AI应用打造的专业开发套件。用户可根
在ModelArts中公共资源池和专属资源池的区别是什么? 共享池是所有ModelArts共享的一个资源池,当使用人数比较多的时候,可能造成资源紧张而产生排队。 专属池是专属于您的资源池,不会因为资源紧张而产生排队,同时专属资源池支持打通自己的VPC,能和自己的资源网络互通。 父主题: Standard专属资源池
ModelArts SDK、OBS SDK和MoXing的区别是什么? ModelArts SDK ModelArts服务提供的SDK,可调用ModelArts功能。您可以下载SDK至本地调用接口,也可以在ModelArts Notebook中直接调用。 ModelArts SD
在ModelArts进行模型训练时,会产生计算资源和存储资源的累计值计费。计算资源为训练作业运行的费用。存储资源包括数据存储到OBS或SFS的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 公共资源池 使用计算资源的用量。 具体费用可参见ModelArts价格详情。
ModelArts在线服务和批量服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 批量服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。 批量服务一次性推理批量数据,处理完服务结束。在线服务提供API接口,供用户调用推理。
再进行计算,属于访存密集型。 PD分离部署场景下,大模型推理的Prefill阶段(全量推理)和Decode阶段(全量推理)分别实例化部署在不同的推理卡资源上同时进行推理,用于提高资源利用效率。 PD分离结合Prefill阶段的计算密集型特性,以及Decode阶段的访存密集型特性,
8 核 32GB、计算节点个数为1个的公共资源池和磁盘规格为5GB的运行盘(总计单价:3.407 元/小时),并于当天13:00:00删除Notebook实例。按照计算资源费用和存储费用结算,那么运行这个Notebook实例的费用计算如下: 资源费用 = 计算资源费用 + 存储费用
在ModelArts进行AI全流程开发时,会产生计算资源的计费,计算资源为进行运行自动学习、Workflow、开发环境、模型训练和部署服务的费用。具体内容如表1所示。 表1 计费项 计费项 计费项说明 适用的计费模式 计费公式 计算资源 专属资源池 使用计算资源的用量。 具体费用可参见ModelArts价格详情。
Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。 ModelArts
在“访问授权”页面,选择需要授权的“授权对象类型”,选择新增委托及其对应的权限“普通用户”,并勾选“我已经详细阅读并同意《ModelArts服务声明》”,然后单击“创建”。 完成配置后,在ModelArts控制台的权限管理列表,可查看到此账号的委托配置信息。 步骤2:订阅模型 “商超商品识别”的模型共享在AI
在ModelArts自动学习和Workflow中进行模型训练和推理时,会使用计算资源和存储资源,会产生计算资源和存储资源的累计值计费。具体内容如表1所示。 计算资源费用: 如果运行自动学习作业/Workflow工作流时,使用专属资源池进行模型训练和推理,计算资源不计费。 如果运行自动
多功能的镜像和模型统一纳管。 通常AI模型部署和规模化落地非常复杂。 例如,智慧交通项目中,在获得训练好的模型后,需要部署到云、边、端多种场景。如果在端侧部署,需要一次性部署到不同规格、不同厂商的摄像机上,这是一项非常耗时、费力的巨大工程,ModelArts支持将训练好的模型一键
大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。
大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。
大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。
大模型推理是自回归的过程,有以下两阶段: Prefill阶段(全量推理) 将用户请求的prompt传入大模型,进行计算,中间结果写入KVCache并推出第1个token,属于计算密集型。 Decode阶段(增量推理) 将请求的前1个token传入大模型,从显存读取前文产生的KVCache再进行计算,属于访存密集型。
精度比对功能主要针对两类场景的问题: 同一模型,从CPU或GPU移植到NPU中存在精度下降问题,对比NPU芯片中的API计算数值与CPU或GPU芯片中的API计算数值,进行问题定位。 同一模型,进行迭代(模型、框架版本升级或设备硬件升级)时存在的精度下降问题,对比相同模型在迭代前后版本的API计算数值,进行问题定位。
下图展示了多卡profiling分析的overall模块,包含集群快慢卡统计数值(slow rank,用于分析计算和任务下发的快慢卡)和集群带宽统计数值(slow link,用于分析集群中的网络通信慢链路)。点开slow rank模块,html中会基于表格展示每张卡不同step的计算耗时、通信耗时和空闲耗时