检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
从本地上传数据到ModelArts数据集 前提条件 已存在创建完成的数据集。 创建一个空的OBS桶,OBS桶与ModelArts在同一区域,并确保用户具有OBS桶的操作权限。 本地上传 文件型和表格型数据均支持从本地上传。从本地上传的数据存储在OBS目录中,请先提前创建OBS桶。 从本地上传的数据单次最多支持100个文件同时上传,总大小不超过5GB。
监控资源 用户可以通过资源占用情况窗口查看计算节点的资源使用情况,最多可显示最近三天的数据。在资源占用情况窗口打开时,会定期向后台获取最新的资源使用率数据并刷新。 操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“g
of integers 资源规格支持的计费模式。可选值如下: 0:按需计费 1:包周期计费 billingCode String 资源规格编码。用来对应运营平台的上架的商品。 jobFlavors Array of strings 资源规格支持的作业类型列表。 表9 gpu 参数 参数类型
模型NPU卡数取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推 表1 模型NPU卡数取值表 支持模型 支持模型参数量 文本序列长度 训练类型 Zero并行 规格与节点数 llama3 70B cutoff_len=4096
下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF1
下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF1
下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF1
ModelArts服务提供包年/包月和按需计费两种计费模式,以满足不同场景下的用户需求。如您需要快速了解ModelArts服务不同计费模式的具体价格,请参见ModelArts价格详情。 包年/包月:一种预付费模式,即先付费再使用,按照订单的购买周期进行结算。购买周期越长,享受的折扣越大。一般适用于计算资源需求量长期稳定的成熟业务。
否 mode 确定性计算模式。可配置True或False。参数示例:mode=True。默认值:False。 即使在相同的硬件和输入下,API多次执行的结果也可能不同,开启确定性计算是为了保证在相同的硬件和输入下,API多次执行的结果相同。 确定性计算会导致API执行性能降低
梯度监控工具提供了将模型梯度数据导出的能力。使用梯度监控工具,可以实现对训练过程模型每一层梯度信息进行监控,目前支持两种能力: 将模型权重的梯度数据导出。这种功能可以将模型权重的梯度值以统计量的形式采集出来,用以分析问题,例如检测确定性问题,使用训练状态监控工具监控NPU训练过程中的确定性计算问题。 将两
ModelArts支持将模型部署为哪些类型的服务? 在线服务和批量服务有什么区别? 在线服务和边缘服务有什么区别? 为什么选择不了Ascend Snt3资源? 线上训练得到的模型是否支持离线部署在本地? 服务预测请求体大小限制是多少? 在线服务部署是否支持包周期? 部署服务如何选择计算节点规格? 部署GPU服务支持的Cuda版本是多少?
ux中的远程目录。 提供海量、安全、高可靠、低成本的数据存储能力,可供用户存储任意类型和大小的数据。 可以为云服务器提供高可靠、高性能、规格丰富并且可弹性扩展的块存储服务,可满足不同场景的业务需求。云硬盘就类似PC中的硬盘。 存储数据的逻辑 存放的是文件,会以文件和文件夹的层次结构来整理和呈现数据。
模型本身的算法设计过程也可能会引入不收敛情况;最后,则是不符合预期的计算或者通信导致的模型收敛问题。 在迁移流程中,一般已经有模型训练的标杆,因此主要关注昇腾软件栈引入的精度偏差即可。由于昇腾芯片和GPU芯片的架构差异(包括不同架构下的GPU芯片),收到数值计算精度的影响,在软
8.2.70 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.3.909-xxx.zip软件包中的AscendCloud-CV-6.3.909-xxx.zip 说明: 包名中的xxx表示具体的时间戳,以包名的实际时间为准。 获取路径:Support-E
具体逻辑模型请参考PyTorch自动迁移。 在PyTorch模型迁移后进行训练的过程中,CPU只负责算子的下发,而NPU负责算子的执行,算子下发和执行异步发生,性能瓶颈在此过程中体现。在PyTorch的动态图机制下,算子被CPU逐个下发到NPU上执行。一方面,理想情况下CPU侧算
PP:流水线并行将模型的不同层放置到不同的计算设备,降低单个计算设备的显存消耗,从而实现超大规模模型训练。流水线并行也叫层间并行,层输入输出的依赖性使得设备需要等待前一步的输出,通过batch进一步切分成微batch, 网络层在多个设备上的特殊安排和巧妙的前向后向计算调度,可以最大程度
TPE算法优化的超参数必须是分类特征(categorical features)吗 对于优化的超参数类型,TPE算法本身是没有限制的,但出于面对普通用户节省资源的目的,ModelArts在前端限制了TPE的超参数必须是float,如果想离散型和连续型参数混用的话,可以调用rest接口。
自定义一个易于分辨的AI应用中文名称。 字符长度在1到30之间。 许可证 否 选择AI应用遵循的许可证。 计算规格选择 是 按需选择计算规格。单击“选择”,在弹窗中选择资源规格并设置运行时长控制,单击“确定”。 在“所在区”选择计算规格所在的区域。默认显示全部区域的计算规格。 选择计算规格不
算子,其在CPU和Ascend上的实现方法存在差异(硬件结构不同),后者在运算此类算子时涉及到数组的重排,性能较差; 模型的部分算子在昇腾上不支持,或者存在Transpose操作,会导致模型切分为多个子图,整体的推理耗时随着子图数量的增多而增长; 模型没有真正的调用昇腾后端,而是
Cloud)可以为您构建隔离的、用户自主配置和管理的虚拟网络环境,操作指导请参考创建虚拟私有云和子网。 创建SFS Turbo SFS Turbo HPC型文件系统为用户提供一个完全托管的共享文件存储。SFS Turbo文件系统支持无缝访问存储在OBS对象存储桶中的对象,用户可以指定SFS