检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
tor和oracle-connector具有以下优点: 负载均匀,数据分片的个数和范围与源表的数据无关,而是由源表的存储结构(数据块)确定,颗粒度可以达到“每个数据块一个分区”。 性能稳定,完全消除“数据偏斜”和“绑定变量窥探”导致的“索引失效”。 查询速度快,数据分片的查询速度比用索引快。
tor和oracle-connector具有以下优点: 负载均匀,数据分片的个数和范围与源表的数据无关,而是由源表的存储结构(数据块)确定,颗粒度可以达到“每个数据块一个分区”。 性能稳定,完全消除“数据偏斜”和“绑定变量窥探”导致的“索引失效”。 查询速度快,数据分片的查询速度比用索引快。
获取关系型数据库使用的用户和密码。 检查磁盘空间,确保没有出现告警且余量满足导入、导出数据的大小。 如果设置的作业需要使用指定YARN队列功能,该用户需要已授权有相关YARN队列的权限。 设置任务的用户需要获取该任务的执行权限,并获取该任务对应的连接的使用权限。 操作前需要进行如下配置: 获取关系
metastore.server.min.threads MetaStore启动的用于处理连接的线程数,如果超过设置的值之后,MetaStore就会一直维护不低于设定值的线程数,即常驻MetaStore线程池的线程会维护在指定值之上。 200 hive.server2.enable.doAs
集群仅作数据计算处理的存算分离场景。 用户通过IAM服务的“委托”机制进行简单配置,即可实现OBS的访问。 方案架构 Hive是建立在Hadoop上的数据仓库框架,提供大数据平台批处理计算能力,能够对结构化/半结构化数据进行批量分析汇总完成数据计算。提供类似SQL的Hive Query
MemArtsCC是一款面向存算分离架构的分布式计算侧缓存系统,采用极轻量化的架构设计,部署在计算侧的集群中,通过智能预取远端对象存储上的数据提供高速缓存能力,从而来加速计算任务执行。 MemArtsCC在存储层面将远端对象存储(OBS)上的对象进行切片,并建立索引,大幅提升缓存数据的读取性能。通过Zo
ClickHouse与其他组件的关系 ClickHouse安装部署依赖ZooKeeper服务。 ClickHouse通过Flink流计算应用加工生成通用的报表数据(明细宽表),准实时写入到ClickHouse,通过Hive/Spark作业加工生成通用的报表数据(明细宽表),批量导入到ClickHouse。
Yarn与其他组件的关系 Yarn和Spark组件的关系 Spark的计算调度方式,可以通过Yarn的模式实现。Spark共享Yarn集群提供丰富的计算资源,将任务分布式的运行起来。Spark on Yarn分两种模式:Yarn Cluster和Yarn Client。 Yarn
本章节适用于MRS 3.5.0及以后版本。 当使用Flink的Full outer Join算子实现宽表拼接功能时,由于状态会被多次重复存储导致状态后端压力大,计算性能差。使用MultiJoin算子进行宽表拼接计算性能可以提升1倍。 FlinkSQL支持MultiJoin算子使用限制
MRS集群支持创建Task节点,只作为计算节点,不存放持久化的数据,是实现弹性伸缩的基础。 客户价值 在MRS服务只作为计算资源的场景下,使用Task节点可以节省成本,并可以更加方便快捷地对集群节点进行扩缩容,满足用户对集群计算能力随时增减的需求。 用户场景 当集群数据量变化不大
MemArtsCC与其他组件的关系 MemArtsCC与OBS的关系 OBS提供一种新的InputStream:OBSMemArtsCCInputStream,该InputStream从部署在计算侧上的MemArtsCC集群读取数据,从而减少OBS服务端压力,提升数据读取性能的目标。 MemA
HAVING HAVING与聚合函数和GROUP BY一起使用,来控制选在哪些组。 HAVING能够在分组和聚合计算之后,过滤掉不满足给定条件的组。 例如: SELECT count(*), mktsegment, nationkey, CAST(sum(acctbal) AS bigint)
MRS集群节点类型说明 MRS集群由多个弹性云服务器节点组成,根据节点的不同规格,系统以节点组的方式进行管理,不同的节点组一般选用不同的云服务器规格。 根据节点上部署的组件角色的不同,集群内的节点类型可分为Master节点、Core节点、Task节点。 表1 集群节点分类 节点类型
查看RDD在内存中的大小,如果数据太大,需要改变RDD的存储级别来优化。 操作步骤 优化GC,调整老年代和新生代的大小和比例。在客户端的“conf/spark-default.conf”配置文件中,在spark.driver.extraJavaOptions和spark.executor
志查看RDD在内存中的大小,如果数据太大,需要改变RDD的存储级别来优化。 操作步骤 优化GC,调整老年代和新生代的大小和比例。在客户端的conf/spark-defaults.conf配置文件中,在spark.driver.extraJavaOptions和spark.executor
API:提供基于窗口的API。 资源调度器:新增基于资源的调度器插件,可以在拓扑定义时指定可使用的最大资源,并且通过配置的方式指定用户的资源配额,从而管理该用户名下的拓扑资源。 State Management:提供带检查点机制的Bolt接口,当事件失败时,Storm会自动管理bolt的状态并且执行恢复。
MRS服务计费简单、易于预测。MRS支持按需计费,同时您也可以选择更经济的包年、包月的包周期计费方式。为了便于您便捷的下单购买,在控制台购买界面中已经为您计算好了整个MRS集群的价格,您可一键完成购买。 计费项 购买MRS集群的费用包含两个部分: MRS服务管理费用 您可以在“费用中心 >
从零开始使用Spark 本章节提供从零开始使用Spark提交sparkPi作业的操作指导,sparkPi是最经典的Spark作业,它用来计算Pi(π)值。 操作步骤 准备sparkPi程序。 开源的Spark的样例程序包含多个例子,其中包含sparkPi。可以从https://archive
高频访问的SQL查询和有高耗时的算子(连接, 聚合等算子)的SQL通过建立物化视图进行预计算,然后在查询的SQL中将能匹配到物化视图的查询或者子查询转换为物化视图,避免了数据的重复计算,这种情况下往往能较大地提高查询的响应效率。 物化视图通常基于对数据表进行聚合和连接的查询结果创建。
志查看RDD在内存中的大小,如果数据太大,需要改变RDD的存储级别来优化。 操作步骤 优化GC,调整老年代和新生代的大小和比例。在客户端的conf/spark-default.conf配置文件中,在spark.driver.extraJavaOptions和spark.executor