检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。 扩写:根据段落的其中一句或者一段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的某个句子:xxx/某个段落:xxx。请根据以上的句子/段落
盘古大模型依托海量且多样化的训练数据,涵盖从日常对话到专业领域的广泛内容,帮助模型更好地理解和生成自然语言文本,适用于多个领域的业务应用。这些数据不仅丰富多样,还为模型提供了深度和广度的语言学习基础,使其能够生成更加自然、准确且符合语境的文本。 通过对海量数据的深入学习和分析,盘古大模型
盘古自然语言大模型的适用场景有哪些 自然语言处理大模型是一种参数量极大的预训练模型,是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模型的预训练模
户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊的查询,也能提供准确的响应。这种对话问答方式提高了知识获取效率,使智能客服系统更加人性化和有温度。 此外,盘古大模型还能够根据用户的行为和反馈不断学习和优化,进一步提升服务能力。它能识别用户的情绪和语
数据量和质量均满足要求,为什么微调后的效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。
可以引导大模型生成准确率更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等,否则可能会直接嫁接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。
数据是大模型训练的基础,提供了模型学习所需的知识和信息。大模型通过对大量数据的学习,能够理解并抽象出其中的复杂模式,从而进行精准的预测和决策。在训练过程中,数据的质量和多样性至关重要。高质量的数据能够提升模型对任务的理解,而多样化的数据则帮助模型更好地应对各种情况。因此,数据的收集和处理是大模型训练中的关键环节。
直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函数。有标记的训练数据是指每个训练实例都包括输入和期望的输出。 LoRA 局部微调(LoRA)是一种优化技术,用于在深度学习模型的微调过程中,只对模型的一部分参数进行更新,而不是对所
概述 盘古大模型整合华为云强大的计算和数据资源,将先进的AI算法集成在预训练大模型中,打造出具有深度语义理解与生成能力的人工智能大语言模型。可进行对话互动、回答问题、协助创作。 华为云盘古大模型,以下功能支持API调用。 表1 API清单 API 功能 NLP-文本补全 给定一个
功能模型:功能模型是在基模型的基础上经过微调,专门适应特定任务,并具备对话问答的能力。经过特定场景优化的功能模型能够更有效地处理文案生成、阅读理解、代码生成等任务。 专业大模型:针对特定场景优化的大模型。例如,与非专业大模型相比,BI专业大模型更适合执行数据分析、报告生成和业务洞察等任务。
如何调整训练参数,使模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。 数据量级:
什么情况下需要微调 微调的目的是为了提升模型在某个特定任务或领域的表现。在大多数场景下,通过Prompt工程,通用模型也能给出比较满意的回答。但如果您的场景涉及以下几种情况,则建议采用微调的手段来解决: 目标任务依赖垂域背景知识:通用模型学习到的知识大部分都是来自互联网上的开源数据,如果目
欠拟合:当微调数据量很小时,模型无法有效地调整模型的参数,同时也很容易受到数据噪声的干扰,从而影响模型的鲁棒性。当目标任务的难度较大时,该问题将愈加显著。 当然,如果您的可用数据很少,也可以采取一些方法来扩充您的数据,从而满足微调要求,比如: 数据增强:在传统机器学习中,可以通过简单的重复上采样方式来扩充数
decay)的机制,可以有效地防止过拟合(overfitting)的问题。 学习率衰减比率 0.1 0~1 学习率衰减后,最小不会低于的学习率,计算公式为:学习率*学习率衰减比率。 热身比例 0.01 0~1 热身阶段占整体训练的比例。 模型刚开始训练时,如果选择一个较大的学习率,可能
基于NLP-N2-基模型训练的单场景模型,可支持选择一个场景进行推理,如:搜索RAG方案等,具有32K上下文能力。 NLP大模型训练过程中,一般使用token来描述模型可以处理的文本长度。token(令牌)是指模型处理和生成文本的基本单位。token可以是词或者字符的片段。模型的输入和输出的文本都会
完成全部训练数据集训练的次数。 学习率 0.0001 0~1 学习率用于控制每个训练步数(step)参数更新的幅度。需要选择一个合适的学习,因为学习率过大会导致模型难以收敛,学习率过小会导致收敛速度过慢。 模型保存步数 500 10的倍数 每训练一定数量的步骤(或批次)后,模型的状态就会被保存下来。
对于微调而言,数据质量非常重要。一份数据量少但质量高的数据,对于模型效果的提升要远大于一份数据量多但质量低的数据。若微调数据的质量较差,那么可能会导致模型学习到一些错误或者不完整的信息,从而影响模型的准确性和可靠性。因此,不建议您直接使用低质量数据进行微调。 一份高质量的数据应具备以下几类特征: 数据
Loss)是一种衡量模型预测结果和真实结果差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。以下给出了几种正常的Loss曲线形式: 图2 正常的Loss曲线:平滑下降 图3 正常的Loss曲线:阶梯下降 如果
质量或者减小学习率的方式来解决。 图3 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss保持平缓且保持高位不下降的原因可能是由于目标任务的难度较大,或者模型的学习率设置得过小,导致模型的收敛速度太慢,无法达到最优解。您可以尝试增大训练轮数或者增大学习率的方式来解决。
深感敬佩。在宋朝的生活中,李晓也遇到了许多困难。他必须适应新的食物,新的气候,甚至新的疾病。但是,他从未放弃,他始终坚信,只要他坚持下去,他就能适应这个新的世界。在宋朝的生活中,李晓也找到了新的目标。他开始学习宋朝的书法,尝试理解这个时代的艺术。他还开始学习宋朝的医学,尝试理解这