检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
产品优势 大规模 高效的数据组织,让您更有效的对百亿节点千亿边规模的数据进行查询与分析。 高性能 深度优化的分布式图形计算引擎,为您提供高并发、秒级多跳的实时查询能力。 查询分析一体 查询分析一体化,提供丰富的图分析算法,为关系分析、路径的规划、营销推荐等业务提供多样的分析能力。 简单易用
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
集群容量:包括点和边的使用量、容量和使用率。 集群节点:包括CN节点可用数量/总数量、DN节点可用数量/总数量。 集群请求数统计:包括等待中的读请求个数、运行中的读请求个数、等待中的写请求个数、运行中的写请求个数。 图2 图集群状态 告警统计 在告警统计模块,您可以查看当前实例未消除的所有告警,以及过去7天实例产生的所有告警信息。
Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。
)增强可靠性。 用途 创建图的用途。 “企业生产”:支持高可靠,高并发,适合企业生产及大规模应用时使用。 “开发学习”:完整功能体验,适合开发者学习使用。 产品类型 可选的产品类型。 内存版:容量有限,最大可支持到百亿边。基于内存存储和计算,预置丰富的算法,支持Gremlin和Cypher查询语言。
用户Token。 用于获取操作API的权限。获取方法请参见获取Token接口,响应消息头中X-Subject-Token的值即为Token。 表3 请求Body参数 参数 是否必选 参数类型 描述 scenes 否 Array of scenes objects 要订阅的具体场景。 表4 scenes
通过知识点的先修关系,识别学习路径,针对薄弱知识点进行学习路径推荐。 金融风控应用 面对层出不穷、复杂多样的个人和群体行为,帮助客户挖掘出潜在的风险,为客户保驾护航。 该场景能帮助您实现以下功能。 实时欺诈检测 提供实时的用户行为检测,识别敏感用户,信息不一致的用户,及时识别欺诈风险。
用户Token。 用于获取操作API的权限。获取方法请参见获取Token接口,响应消息头中X-Subject-Token的值即为Token。 表3 请求Body参数 参数 是否必选 参数类型 描述 scenes 否 Array of scenes objects 要取消订阅的具体场景列表。 表4
k:拓展深度,表示要拓展的最大级数,取值范围为1-100,默认值为3。 directed:拓展方向(是否考虑边的方向)取值为true或false,默认true。 true:考虑边的方向。 false:不考虑边的方向。 图1 动态拓展 输入完成后,单击“动态拓展”模块右侧的按钮,运
从一个点出发搜索到目标节点的时序路径(时序路径满足动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边的经过时间),在画布上呈现点、边随时间递增(或非减)的变化趋势。 该功能可以通过strategy参数调整搜索的是距离最短的时序路径,还是尽早到达目标节点的时序路径。具体操作步骤如下:
动态分析时间边界的开始时间。 end 是 Date或Integer 动态分析时间边界的结束时间。 time_props 是 Object 动态分析的时间属性定义。 表4 time_props参数说明 参数 是否必选 类型 说明 stime 是 String 动态图开始时间的属性名称。 etime
temporal paths算法,返回距离最短的时序路径 foremost:运行foremost temporal paths算法,返回尽可能早的到达目标节点的时序路径 fastest:运行fastest temporal paths算法,返回耗费时间最短的时序路径 表4 dynamicRange
根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
Paths:表示距离最短的时序路径。 Foremost Temporal Paths:表示尽可能早的到达目标节点的时序路径。 Fastest Temporal Paths :表示耗费时间最短的时序路径。 适用场景 适用于疫情或疾病传播溯源、信息传播和舆情分析、结合时序的路径规划、资金流通路径等场景。
er语句可以查询和修改GES中的数据,并返回结果。 商用 Cypher查询 2 上线子图匹配算法 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 商用 子图匹配 3 上线带过滤全对最短路径算法
根据输入参数,执行Cesna算法。 Cesna算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的。此外,该算法还利用了节点属性对社区进行建模,即假设节点的属性也是根据社区关系生成的。 URI POST /ges/v1.0/{project_id}/
费提供的更大折扣,节省34%至47%的费用,该方式适合计划长期使用的客户。 预付费实例是一种计费理念,可以理解为一种优惠券,购买预付费实例和创建并使用实例是独立的过程。当您在使用实例时,计费系统会自动比较您已购买的有效期内的预付费实例数量和您使用的相同区域、相同实例规格的实例数量
紧密中心度是一个节点到所有其他可达节点的最短距离的平均,该指标可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越小,其所在图中的位置越中心。 标签传播(Label Propagation) 一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预
器下。 资源的价格 不同区域的资源价格可能有差异,请参见华为云服务价格详情。 如何选择可用区 是否将资源放在同一可用区内,主要取决于您对容灾能力和网络时延的要求。 如果您的应用需要较高的容灾能力,建议您将资源部署在同一区域的不同可用区内。 如果您的应用要求实例之间的网络延时较低,则建议您将资源创建在同一可用区内。
紧密中心度是一个节点到所有其他可达节点的最短距离的平均,该指标可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越小,其所在图中的位置越中心。 标签传播(Label Propagation) 一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预