检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ModelArts支持在开发环境中开启TensorBoard可视化工具。TensorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。TensorBoard能够有效地展示训练过程中的计算图、各种指标随时间的变化趋势以及训练中使用到的数据信息,相
__name__ == '__main__': main() 结果对比 分别以单机单卡和两节点16卡两种资源类型完成100epoch的cifar-10数据集训练,训练时长和测试集准确率如下。 表1 训练结果对比 资源类型 单机单卡 两节点16卡 耗时 60分钟 20分钟 准确率
1:物体检测 3: 图像分割 100:文本分类 101:命名实体 102:文本三元组关系标签 103:文本三元组实体标签 200:语音分类 201:语音内容 202:语音分割 600:视频标注 表4 LabelAttribute 参数 是否必选 参数类型 描述 default_value 否
Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。
用户可通过不同模型中的xxx_install.sh脚本一键适配。在用户通过Dockerfile构建模型的环境镜像时会执行该脚本,这会从github上拉取模型的官方源码,并通过git apply qwen-vl.patch的方式进行NPU适配,最后将以上源码和环境打包至镜像中。 AscendCloud-AIGC-6
用户可通过不同模型中的xxx_install.sh脚本一键适配。在用户通过Dockerfile构建模型的环境镜像时会执行该脚本,这会从github上拉取模型的官方源码,并通过git apply qwen-vl.patch的方式进行NPU适配,最后将以上源码和环境打包至镜像中。 AscendCloud-AIGC-6
署的全流程指导。 场景描述 本案例用于指导用户使用PyTorch1.8实现手写数字图像识别,示例采用的数据集为MNIST官方数据集。 通过学习本案例,您可以了解如何在ModelArts平台上训练作业、部署推理模型并预测的完整流程。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。
实现资源的高效利用、灵活分配和动态管理。 ModelArts Standard资源池提供了在使用ModelArts进行AI开发(包括自动学习、创建Workflow工作流、创建Notebook实例、创建训练作业和创建推理服务)所需的计算资源。您可根据业务所需购买使用Standard资源池。
量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install -e
量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install -e
Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为文本嵌入,然后和一个随机高斯噪声,一起输入到U-Net网络中进行不断去噪。在经过多次迭代后,最终模型将输出和文字相关的图像。 SD1.5 Finetune是指在已经训练好的SD1
量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install -e
使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复。这种技术可以帮助减少内
功能总览 全部 自动学习 Workflow 开发工具 算法管理 训练管理 AI应用管理 部署上线 镜像管理 资源池 AI Gallery ModelArts SDK 昇腾生态 自动学习 自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据
B和Qwen-72B,操作过程与Qwen-14B相同,只需修改对应参数即可。 下载数据 SFT微调涉及的数据下载地址:https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM/blob/main/data/alpaca_gpt4_data
为什么项目删除完了,仍然还在计费? 如果ModelArts的自动学习项目、Notebook实例、训练作业或在线服务,都已经处于停止状态,即总览页面没看到收费项目,仍然发现账号还在计费。 有以下几种可能情况: 因为您在使用ModelArts过程中,将数据上传至OBS进行存储,OBS
使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复。这种技术可以帮助减少内
memoryUsed, gpu.memoryUtil*100, gpu.memoryTotal)) 注:用户在使用pytorch/tensorflow等深度学习框架时也可以使用框架自带的api进行查询。 父主题: Standard Notebook
注作业。 在弹出的“启动智能标注”对话框中,选择智能标注类型,可选“主动学习”或者“预标注”,详见表1和表2。 表1 主动学习 参数 说明 智能标注类型 “主动学习”。“主动学习”表示系统将自动使用半监督学习、难例筛选等多种手段进行智能标注,降低人工标注量,帮助用户找到难例。 算法类型
使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复。这种技术可以帮助减少内