检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
CS服务的正常使用。 请自行关注部署节点的系统安全防护与配置加固,确保机器在安全的前提下进行隐私计算节点部署。 CCE服务委托授权 由于CCE在运行中对计算、存储、网络以及监控等各类云服务资源都存在依赖关系,因此当您首次登录CCE控制台时,CCE将自动请求获取当前区域下的云资源权限,从而更好地为您提供服务。
API概览 TICS提供的接口为符合RESTful API设计规范的自研接口。 使用空间API可以查询TICS空间的相关信息,如获取空间列表、获取计算节点列表等。空间API可通过调用IAM服务“获取用户Token接口”获取Token进行认证鉴权,支持在API Explorer平台
开发环境简介 在进行多方安全计算应用开发时,要准备的环境如表1所示。 同时需要准备运行调测的Linux环境,用于验证应用程序运行正常。 表1 准备项 准备项 说明 购买TICS服务 在TICS控制台通过下单建立数据空间,或者将租户加入已有的数据空间。 部署计算节点 在TICS控制
环境准备 开发环境简介 参考:获取认证信息 配置CCE服务 配置IEF服务 TICS服务委托授权 配置IEF高可用节点 购买TICS服务 部署计算节点 创建连接器
将加密的二进制字节内容使用用户上传的密钥和数据的iv字节解密。 用户上传的密钥是指在上传密钥上传的AES密钥。 binary:必填。加密的数据,参数类型为字节数组byte[]类型。 binary:必填。加密时使用的iv信息,参数类型为字节数组byte[]类型。 返回解密后的字节数组。
Service)。可信智能计算服务TICS打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 在调用可信智能计算服务TICS
隐私求交是可信智能计算服务提供的安全获取参与双方所持数据交集的功能。它允许参与计算的双方,在不获取对方任何额外信息(除交集外的其它信息)的基础上,得到双方持有数据的交集。 单独使用场景 数据持有双方为获取己方与对方数据的交集,在不暴露其它数据的情况下,将需要获取交集的那一部分数据与对方的数据,通过创
在开始开发前,需要了解多方安全计算的基本概念。 常用概念 准备TICS执行环境 TICS执行环境当前依赖TICS空间、计算节点和连接器。 环境准备 根据场景编写sql程序 当前多方安全计算支持通过编写sql语句,来构建多方安全计算业务场景的计算任务。 使用场景 运行程序及查看结果 指导用户将开发好的sql在
至此,企业A完成了整个TICS联邦建模的流程,并将模型应用到了营销业务当中。这个预测作业可以作为后续持续预测的依据,企业A可以定期地使用模型预测自己的新业务数据。同时企业A也可以根据新积累的数据训练出新的模型,进一步优化模型预测的精确率,再创建新的联邦预测作业,产出更精准的预测结果供业务使用。 父主题:
空间发起方需要根据基于CCE集群创建联盟链完成空间链的创建过程。 “区块链类型”参数值需要选择“空间链”,否则将影响后续操作。 发起方按照组建联盟链中“邀请成员”部分的描述,邀请参与方加入空间链。 参与方登录区块链服务(BCS)按照组建联盟链中“同意/拒绝邀请”部分的描述,创建BCS实例并加入空间链。
、购买TICS服务、授权IAM用户使用TICS、准备数据、启用区块链审计服务(可选)等一系列准备工作。 本入门示例,是为了演示TICS使用的全流程。组织方在组建空间时,需要至少添加1位合作方。 父主题: 快速入门
可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行可信联邦学习,联合建模。
基本概念 账号 用户的账号对其所拥有的资源及云服务具有完全的访问权限,可以重置用户密码、分配用户权限等。为了确保账号安全,建议您不要直接使用账号进行日常管理工作,而是创建用户并使用用户进行日常管理工作。 用户 由账号在IAM中创建的用户,是云服务的使用人员,具有身份凭证(密码和访问密钥)。
接AOM。 计算节点为边缘节点部署时,需要手动在IEF平台对接AOM。 约束限制 对接AOM之后,相应的日志存储在AOM平台上,平台每月提供500M的免费空间,超出则计费。具体的计费规则参见计费概述。 计算节点为边缘节点部署时,仅支持1.20.0及以上版本对接AOM,低版本可参考空间升级将空间升级至最新版本。
部署配置选择边缘节点部署。 云租户部署模式下,TICS服务可以按照选取的规格,为客户预置默认资源分配策略。 边缘节点部署模式下,使用的纳管节点为客户机器或者云上虚机,TICS服务无法主动感知到节点资源大小,需客户手动填入。 图1 资源分配策略 这样就会有不合理的资源分配场景出现,最终导致计算节点容器因资源不足启动失败。
多方安全计算是可信智能计算服务(TICS)提供的关系型数据安全共享和分析功能。 您可以创建多方安全计算作业,根据合作方已提供的数据,编写相关SQL作业并获取您所需要的分析结果,能够在作业运行的同时保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 父主题: 服务介绍
用于处理评估/预测数据的数据预处理作业。注意,作业中所选的数据集应为评估/预测数据集,且字段定义、尤其是分布类型的定义与之前的训练数据集相同。 单击创建的数据预处理作业后的开发按钮,进入作业开发页面。然后单击左上角的“关联历史作业”,在弹窗中选择训练数据的预处理作业后,单击“保存”。
用户id查询企业B的数据,辅助企业A的实时分析业务。而企业A不想暴露给企业B自己查询的用户id,因为查询该用户的信息隐含着“该用户是企业A的客户”的信息,存在用户隐私泄露的风险。 企业A和企业B可以使用TICS服务的实时隐匿查询功能,既能满足实时业务高效低延迟的业务需求,又能避免
多方安全计算”页面单击创建,进入sql开发页面,展开左侧的“合作方数据”可以看到企业A、大数据厂商B发布的不同数据集。 单击某一个数据集可以看到数据集的表结构信息。 此时企业A可以编写如下的sql语句统计双方的数据碰撞后的正负样本总数,正负样本总数相加即为双方共有数据的总数。 select sum(
感,脱敏)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图