检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建IAM用户并授权使用MaaS 配置ModelArts委托授权章节中介绍的一键式自动授权方式创建的委托的权限比较大,基本覆盖了依赖服务的全部权限。如果华为云账号已经能满足您的要求,则不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用MaaS服务的功能。 ModelArt
查询处理任务详情 功能介绍 查询处理任务详情,支持查询“特征分析”任务和“数据处理”两大类任务。可通过指定路径参数“task_id”来查询某个具体任务的详情。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
准备镜像 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2
ModelArts Standard使用流程 本章节旨在帮助您了解ModelArts Standard的基本使用方法,帮助您快速上手ModelArts服务。 面向熟悉代码编写和调测,熟悉常见AI引擎的开发者,ModelArts不仅提供了在线代码开发环境,还提供了从数据准备、模型训
InternVL2基于DevServer适配PyTorch NPU训练指导(6.3.910) 方案概览 本方案介绍了在ModelArts Lite DevServer上使用昇腾计算资源Ascend Snt9B开展InternVL2-8B, InternVL2-26B和Intern
依赖和委托 功能依赖 功能依赖策略项 您在使用ModelArts的过程中,需要和其他云服务交互,比如需要在提交训练作业时选择指定数据集OBS路径和日志存储OBS路径。因此管理员在为用户配置细粒度授权策略时,需要同时配置依赖的权限项,用户才能使用完整的功能。 如果您使用根用户(与账
预训练任务 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。
开发用于自定义镜像训练的代码 当ModelArts Standard提供的预置框架不满足您的诉求时,ModelArts Standard支持用户构建自定义镜像用于模型训练。 自定义镜像的制作要求用户对容器相关知识有比较深刻的了解,除非订阅算法和预置框架无法满足需求,否则不推荐使用
创建并管理工作空间 工作空间是白名单功能,如果有试用需求,请提工单申请权限。 背景信息 ModelArts的用户需要为不同的业务目标开发算法、管理和部署模型,此时可以创建多个工作空间,把不同应用开发过程的输出内容划分到不同工作空间中,便于管理和使用。 基于工作空间可以实现资源逻辑
审计与日志 审计 云审计服务(Cloud Trace Service,CTS),是华为云安全解决方案中专业的日志审计服务,提供对各种云资源操作记录的收集、存储和查询功能,可用于支撑安全分析、合规审计、资源跟踪和问题定位等常见应用场景。 用户开通云审计服务并创建和配置追踪任务后,C
使用预置镜像制作自定义镜像用于训练模型 使用预置框架构建自定义镜像原理介绍 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面
从容器镜像中导入模型文件创建模型 针对ModelArts目前不支持的AI引擎,您可以通过自定义镜像的方式将编写的模型导入ModelArts。 约束与限制 关于自定义镜像规范和说明,请参见模型镜像规范。 使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。 前提条件
将Notebook的Conda环境迁移到SFS磁盘 本文介绍了如何将Notebook的Conda环境迁移到SFS磁盘上。这样重启Notebook实例后,Conda环境不会丢失。 步骤如下: 创建新的虚拟环境并保存到SFS目录 克隆原有的虚拟环境到SFS盘 重新启动镜像激活SFS盘中的虚拟环境
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
管理训练容器环境变量 什么是环境变量 本章节展示了训练容器环境中预置的环境变量,方便用户查看,主要包括以下类型。 路径相关环境变量 分布式训练作业环境变量 NCCL(Nvidia Collective multi-GPU Communication Library)环境变量 OBS环境变量
自定义镜像使用场景 在AI业务开发以及运行的过程中,一般都会有复杂的环境依赖需要进行调测并固化。面对开发中的开发环境的脆弱和多轨切换问题,在ModelArts的AI开发最佳实践中,通过容器镜像的方式将运行环境进行固化,以这种方式不仅能够进行依赖管理,而且可以方便的完成工作环境切换
使用AI Gallery在线推理服务部署模型 AI Gallery支持将训练的模型或创建的模型资产部署为在线推理服务,可供用户直接调用API完成推理业务。 约束限制 如果模型的“任务类型”是“文本问答”或“文本生成”,则支持在线推理。如果模型的“任务类型”是除“文本问答”和“文本
从OBS中导入模型文件创建模型 针对使用常用框架完成模型开发和训练的场景,可以将您的模型导入至ModelArts中,创建为模型,并进行统一管理。 约束与限制 针对创建模型的模型,需符合ModelArts的模型包规范,推理代码和配置文件也需遵循ModelArts的要求,详细说明请参
创建多机多卡的分布式训练(DistributedDataParallel) 本章节介绍基于PyTorch引擎的多机多卡数据并行训练。并提供了分布式训练调测具体的代码适配操作过程和代码示例。同时还针对Resnet18在cifar10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。
LoRA微调训练 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。