检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建文本类数据集评估标准 ModelArts Studio大模型开发平台针对文本数据集预设了一套基础评估标准,涵盖了数据准确性、完整性、一致性、格式规范等多个维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。
文件的命名不能同时包含train、eval和test中的两个或三个。
补说明 对任务进行补充说明,如补充任务要求、规范输出的格式等。将想要的逻辑梳理表达出来,会让生成效果更加符合预期。说明需要逻辑清晰、无歧义。 设计任务要求 要求分点列举: 要求较多时需要分点列举,可以使用首先\然后,或1\2\3序号分点提出要求。
同时,平台支持数据集的删除等管理操作,使用户能够统一管理数据集资源,以便在模型训练和分析时灵活调用,确保数据资产的规范性与安全性。 模型资产:平台提供的模型资产涵盖了预置或训练后发布的模型,所有这些模型将存放于空间资产中进行统一管理。
tar包存储原始的图片,每张图片命名要求唯一(如abc.jpg)。
管理人员应建立责任所在意识,制定科学规范的使用办法,强化使用过程的监测和评估。必须严格按照项目运作方案来确定资金使用范围,确保所有使用资金都是经过规范操作和审批的,必须严格按照使用资金的监管属性,统一管理各类资金,精细、规范、稳健。
这些资产是用户在平台上进行开发和管理的基础,集中存储和统一管理的方式有助于提升操作效率,并确保资源的规范性与安全性。 数据资产:数据资产是指用户在平台上发布的所有数据集。
单击组件右上角的,可以进行组件的重命名、复制、删除操作。开始和结束组件为必选组件,无法删除。 图6 组件的重命名、复制、删除操作 鼠标拖动左侧“意图识别”组件至编排页面,并连接开始组件和意图识别组件。单击意图识别组件进行配置操作。
NLP数据质量标准 V1.0:ModelArts Studio大模型开发平台针对文本数据集预设了一套基础评估标准,涵盖了数据准确性、完整性、一致性、格式规范等多个维度。该标准旨在帮助用户高效评估和优化文本数据的质量,确保数据符合模型训练的要求,提升模型的性能和可靠性。
在盘古大模型中,以N1系列模型为例,盘古1token≈0.75个英文单词,1token≈1.5汉字。不同模型的具体情况详见表1。
一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。 图文去重 基于结构化图片去重 判断相同文本对应不同的图片数据是否超过阈值,如果超过则去重。
此外,不同类型的NLP大模型在训练过程中,读取中文、英文内容时,字符长度转换为Token长度的转换比有所不同,详见表2。
名称必须以中文或者英文开头。 插件名称长度为1 ~ 200个字符,并且字符只允许为下面的类型: 中文 字母(A-Z或a-z) 数字(0-9) 特殊字符:_和- 空格 插件描述 待创建插件的功能描述。 插件描述的长度为1 ~ 1600个字符。
例如降低“温度”参数的值,可以起到规范模型输出,使结果不再多样化。 父主题: 从基模型训练出行业大模型