检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
CS服务的正常使用。 请自行关注部署节点的系统安全防护与配置加固,确保机器在安全的前提下进行隐私计算节点部署。 CCE服务委托授权 由于CCE在运行中对计算、存储、网络以及监控等各类云服务资源都存在依赖关系,因此当您首次登录CCE控制台时,CCE将自动请求获取当前区域下的云资源权限,从而更好地为您提供服务。
CS服务的正常使用。 请自行关注部署节点的系统安全防护与配置加固,确保机器在安全的前提下进行隐私计算节点部署。 CCE服务委托授权 由于CCE在运行中对计算、存储、网络以及监控等各类云服务资源都存在依赖关系,因此当您首次登录CCE控制台时,CCE将自动请求获取当前区域下的云资源权限,从而更好地为您提供服务。
对于获取用户Token接口,您可以从接口的请求部分看到所需的请求参数及参数说明。将消息体加入后的请求如下所示,加粗的斜体字段需要根据实际值填写,其中username为用户名,domainname为用户所属的账号名称,********为用户登录密码,xxxxxxxxxxxxxxxxxx为project的ID,获取方法请参见项目ID。
附加请求头字段,如指定的URI和HTTP方法所要求的字段。例如定义消息体类型的请求头“Content-Type”,请求鉴权信息等。 详细的公共请求消息头字段请参见表3。 表3 计算节点API公共请求消息头 名称 描述 是否必选 示例 Content-Type 发送的实体的MIME类型。推
在对话框中填写对应的名称和主机的IP地址。 图2 填写信息 单击左侧的新建会话,输入登录的用户名,以root为例。 图3 输入用户名 输入ECS云服务对应的密码,进入对应的服务器。 图4 输入密码 登录成功。 图5 登录成功 方式二:ECS服务控制台 在ECS的服务控制台上,通过IP搜索对应的弹性云服务器。
(1)训练轮数对于联邦学习模型的性能影响不大,这主要是由于乳腺癌数据集的分类相对简单,且数据集经过了扩充导致的; (2)增大每个参与方本地模型训练的迭代次数,可以显著提升最终联邦学习模型的性能。 参与方数据量不同时,独立训练对比横向联邦训练的准确率 本节实验不再将训练集均匀划分到两个参与方,而是以不同的比例进
多方安全计算是可信智能计算服务(TICS)提供的关系型数据安全共享和分析功能。 您可以创建多方安全计算作业,根据合作方已提供的数据,编写相关SQL作业并获取您所需要的分析结果,能够在作业运行的同时保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 父主题: 服务介绍
业,根据合作方已提供的数据,编写相关sql作业并获取您所需要的分析结果,同时能够在作业运行保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。
TICS(可信智能计算服务)采用包周期的计费模式。为了便于您便捷的下单购买,在控制台购买界面中系统会为您计算好所购买的套餐包价格,您可一键完成整个配置的购买。您还可以通过TICS提供的价格计算器,选择您需要的版本规格,来快速计算出购买TICS的参考价格。 计费项 计费模式 续费 到期与欠费
将加密的二进制字节内容使用用户上传的密钥和数据的iv字节解密。 用户上传的密钥是指在上传密钥上传的AES密钥。 binary:必填。加密的数据,参数类型为字节数组byte[]类型。 binary:必填。加密时使用的iv信息,参数类型为字节数组byte[]类型。 返回解密后的字节数组。
TICS基于安全隐私策略的数据安全防护会自动拒绝不合法的SQL语句执行,但当安全规则限制过强的时候,可能会影响正常业务的执行。 对此TICS 提供作业审批功能。配置生效后,所有的计算任务执行时,均会生成审批报告,提交到数据提供方侧,由提供方确认关联数据集的用途和风险。关联参与方都同意后,才能执行SQL作业。
发起方获取某个横向联邦训练作业的训练结果路径。 图1 获取作业结果路径 发起方执行恶意脚本,试图篡改所获取的路径中的作业训练结果。 图2 执行恶意脚本 发起方执行恶意脚本后,由于安全沙箱确保每个横向联邦作业都是隔离的,当某个作业想去访问或篡改其他作业相关的文件时,无法找到作业执行结果
数据商业空间中公司B针对公司A的某些数据资产存在业务需求,由于安全性和数据主权的考虑,公司A与公司B基于TICS完成数据资产的交换。基于TICS进行数据资产交换,保证公司A的数据主权、公司B的数据可获得,同时保证交换过程安全可信。 以下是数据拥有方公司A和数据需求方公司B基于TICS平台的操作。 父主题:
)打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 使用TICS的用户角色 根据人员的职能进行划分,使用TICS的用户主要可以分为以下两类。
EdgeFabric)通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满足客户对边缘计算资源的远程管控、数据处理、分析决策、智能化的诉求。同时,在云端提供统一的设备/应用监控、日志采集等运维能力,为企业提供完整的边缘和云协同的一体化服务的边缘计算解决方案。 前提条件
EdgeFabric)通过纳管您的边缘节点,提供将云上应用延伸到边缘的能力,联动边缘和云端的数据,满足客户对边缘计算资源的远程管控、数据处理、分析决策、智能化的诉求。同时,在云端提供统一的设备/应用监控、日志采集等运维能力,为企业提供完整的边缘和云协同的一体化服务的边缘计算解决方案。 前提条件
感,脱敏)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据参与方提供可视化的数据使用流图
可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行可信联邦学习,联合建模。
联邦预测作业在保障用户数据安全、模型资产安全的前提下,利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计算节点部署在线预测服务的方式,允许用户
Service)。可信智能计算服务TICS打破数据孤岛,在数据隐私保护的前提下,实现行业内部、各行业间的多方数据联合分析和联邦计算。TICS基于安全多方计算MPC、区块链等技术,实现了数据在存储、流通、计算过程中端到端的安全和可审计,推动了跨行业的可信数据融合和协同。 在调用可信智能计算服务TICS