检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
通过灵活调整数据集的比例配比,用户能够保证数据的均衡性,避免因数据分布不均可能引发的问题,从而构建高质量、适应性强的数据集,为后续的模型训练、验证和应用提供坚实的数据支持。 数据发布意义 数据发布不仅包括数据的格式转换,还涉及数据比例的调整,以确保数据在规模、质量和内容上满足训练标
间差距的指标。该值越小,表示模型在表面(海表)变量的预测精度越高。 RMSE 均方根误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的平方误差的平均值的平方根。该值越小,代表模型性能越好。 MAE 平均绝对误差,衡量预测值与真实值之间差距的指标。它是所有单个观测的绝对误差的平均值。该值越小,代表模型性能越好。
包年/包月和按需计费模式可针对不同业务需求进行选择: 对于长时间且稳定的业务需求,包年/包月模式通常更划算,因为它能提供更低的平均成本和一定的稳定性。 对于短期、突发或不可预测的业务需求,按需计费模式则更为合适,因为它提供了更高的灵活性和避免长期预付费可能带来的压力。 父主题: 计费FAQ
数据标注是数据工程中的关键步骤,旨在为无标签的数据集添加准确的标签,从而为模型训练提供有效的监督信号。标注数据的质量直接影响模型的训练效果和精度,因此高效、准确的标注过程至关重要。数据标注不仅仅是人工输入,它还涉及对数据内容的理解和分类,以确保标签精准地反映数据的特征和用途。 为了
针对不同的任务类型,所需数据量会所有不同。从经验上来说,对于简单的任务,数据量的要求会少一点,如3000到5000条;对于复杂的任务,需要的数据条数更大一些,如2万~10万条。在构造指令微调数据的成本可以接受的情况下,至少准备1万条以上指令微调数据为宜。 数据质量要求: 保证微调数据的正确性,多样性,复杂性。
模型的效果和可靠性。数据评估的主要意义体现在以下几个方面: 确保数据质量:通过评估数据集的准确性、完整性和一致性,用户可以及时发现并修复数据中的问题,确保数据符合训练标准。 提升模型性能:高质量的数据集直接影响模型的训练效果。通过准确的评估,用户能够确保数据集的高质量,进而提升模型的性能和精度。
接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本 对于无样本的任务,可以采用让模型分步思考的方法来分解复杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。
示例如下: 去除“参考文献”以及之后的内容:\n参考文献[\s\S]* 针对pdf的内容,去除“0 引言”之前的内容,引言之前的内容与知识无关:[\s\S]{0,10000}0 引言 针对pdf的内容,去除“1.1Java简介”之前的与知识无关的内容:[\s\S]{0,10000}
有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户): 平台提供了Prompt提示词工程和插件自定义等功能,帮助用户在无需编写代码的情况下,
审核视频类数据集标注结果 创建数据集标注任务时,如果设置了启用标注审核,在完成标注后可以在“标注审核”页面审核标注结果。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。
审核文本类数据集标注结果 创建数据集标注任务时,如果设置了启用标注审核,在完成标注后可以在“标注审核”页面审核标注结果。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。
审核图片类数据集标注结果 创建数据集标注任务时,如果设置了启用标注审核,在完成标注后可以在“标注审核”页面审核标注结果。 对于审核不合格的数据可以填写不合格原因并驳回给标注员重新标注。创建标注任务时如果指定了审核人员,则审核人员可以审核数据集,管理员(主账号)可以对所有数据集进行审核。
训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 困惑度 用来衡量大语言模型预测一个语言样本的能力,数值越低,准确率也就越高,表明模型性能越好。
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
动操作,提高数据处理的效率。 满足业务需求:不同类型的数据需要不同的处理方式,平台根据文本、图片、视频、气象等数据类型提供专门的加工工具,满足各种复杂的业务需求。 增强模型性能:通过合适的数据加工,可以提高数据的可用性,进而提升模型的训练效果,使其具备更高的精度和鲁棒性。 总体而
与其他服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
方面进行考虑: 业务数据的可获取性 考虑该任务场景的业务数据是否公开可获取。如果该场景的相关数据可以公开获取,说明模型在训练阶段可能已经接触过类似的语料,因此具有一定的理解能力。这时,通过调整提示词通常可以有效引导模型生成合理的回答。 例如,对于一些常见的问答场景(如常见百科问题
过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。 图文去重 基于结构化图片去重 判断相同文本对应不同的图片数据是否超过阈值,如果超过则去重。
深感敬佩。在宋朝的生活中,李晓也遇到了许多困难。他必须适应新的食物,新的气候,甚至新的疾病。但是,他从未放弃,他始终坚信,只要他坚持下去,他就能适应这个新的世界。在宋朝的生活中,李晓也找到了新的目标。他开始学习宋朝的书法,尝试理解这个时代的艺术。他还开始学习宋朝的医学,尝试理解这