检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
领域适应性:根据模型的预期应用领域,调整训练数据的领域分布。例如,增加特定领域(如医学、法律)的数据比例,以提高模型在该领域的表现。 语言和地域分布 :对于多语言模型,调整不同语言和地域数据的比例,以确保模型在各语言上的性能一致。根据目标应用场景,动态调整训练数据的语言分布。例如,该
标准格式:适用于广泛的数据使用场景,满足大多数模型训练的标准需求。该格式的数据集将发布到资产中,但下游模型开发不可见。 盘古格式:专为盘古大模型训练设计的格式,确保数据集在盘古模型训练中的兼容性和一致性。该格式的数据集将被用于ModelArts Studio大模型开发平台的模型开发功能使用。
针对不同的任务类型,所需数据量会所有不同。从经验上来说,对于简单的任务,数据量的要求会少一点,如3000到5000条;对于复杂的任务,需要的数据条数更大一些,如2万~10万条。在构造指令微调数据的成本可以接受的情况下,至少准备1万条以上指令微调数据为宜。 数据质量要求: 保证微调数据的正确性,多样性,复杂性。
训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。这里代表高空Loss(深海Loss)和表面Loss(海表Loss)的综合Loss。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 高空Loss(深海Loss)
Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到的知识就越多,能学会的知识就更难,若目标任务本身难度较大,建议您替换参数规模更大的模型。 父主题: 大模型微调训练类
一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的损失值。值越小,意味着模型对验证集数据的泛化能力越好。 获取训练日志 单击训练任务名称,可以在“日志”页面查看训练过程中产生的日志。 对于训练异常或
包年/包月和按需计费模式可针对不同业务需求进行选择: 对于长时间且稳定的业务需求,包年/包月模式通常更划算,因为它能提供更低的平均成本和一定的稳定性。 对于短期、突发或不可预测的业务需求,按需计费模式则更为合适,因为它提供了更高的灵活性和避免长期预付费可能带来的压力。 父主题: 计费FAQ
接前文样例的内容,也可以约束只是让它学习参考样例的xxx生成思路、xxx风格、xxx生成方法等。 零样本 对于无样本的任务,可以采用让模型分步思考的方法来分解复杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。
方面进行考虑: 业务数据的可获取性 考虑该任务场景的业务数据是否公开可获取。如果该场景的相关数据可以公开获取,说明模型在训练阶段可能已经接触过类似的语料,因此具有一定的理解能力。这时,通过调整提示词通常可以有效引导模型生成合理的回答。 例如,对于一些常见的问答场景(如常见百科问题
考察模型逻辑 虽然模型的思考过程是个黑盒,但可以通过反问模型答案生成的逻辑或提问模型是否理解任务要求,考察模型生成的逻辑,提升模型思维过程的可解释性。 对于模型答案的反问 如果模型给出了错误的答案,可以反问模型回答的逻辑,有时可以发现错误回答的根因,并基于此修正提示词。 在反问时
有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户): 平台提供了Prompt提示词工程和插件自定义等功能,帮助用户在无需编写代码的情况下,
比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。 A:你可以做什么? B:我可以做很多事情,比如xxxx
示例如下: 去除“参考文献”以及之后的内容:\n参考文献[\s\S]* 针对pdf的内容,去除“0 引言”之前的内容,引言之前的内容与知识无关:[\s\S]{0,10000}0 引言 针对pdf的内容,去除“1.1Java简介”之前的与知识无关的内容:[\s\S]{0,10000}
与其他服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
据,确保数据的准确性与一致性,从而提高数据质量,为模型训练提供可靠的输入。 扩展数据集的多样性和泛化能力 在数据量不足或样本不平衡的情况下,数据合成可以生成新数据,扩展数据集的规模和多样性。通过增加数据的多样性,能够提升模型在各种场景下的泛化能力,增强其对未知数据的适应性。 增强模型训练的有效性
过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。 图文去重 基于结构化图片去重 判断相同文本对应不同的图片数据是否超过阈值,如果超过则去重。
华为云:负责云服务自身的安全,提供安全的云。华为云的安全责任在于保障其所提供的IaaS、PaaS和SaaS类云服务自身的安全,涵盖华为云数据中心的物理环境设施和运行其上的基础服务、平台服务、应用服务等。这不仅包括华为云基础设施和各项云服务技术的安全功能和性能本身,也包括运维运营安全,以及更广义的安全合规遵从。
深感敬佩。在宋朝的生活中,李晓也遇到了许多困难。他必须适应新的食物,新的气候,甚至新的疾病。但是,他从未放弃,他始终坚信,只要他坚持下去,他就能适应这个新的世界。在宋朝的生活中,李晓也找到了新的目标。他开始学习宋朝的书法,尝试理解这个时代的艺术。他还开始学习宋朝的医学,尝试理解这
温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。