检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/{workspace_id}/quotas modelarts:workspace:updateQuotas - √ √ 父主题: 权限策略和授权项
/v1/{project_id}/notebooks/{id}/lease modelarts:notebook:updateStopPolicy - √ √ 父主题: 权限策略和授权项
ersion_id}/stop modelarts:processTask:updateProcessTask - √ √ 父主题: 权限策略和授权项
如何获取本机外网IP? 本机的外网IP地址可以在主流搜索引擎中搜索“IP地址查询”获取。 图1 查询外网IP地址 父主题: 环境配置相关
推理基础镜像: 引擎版本一:tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 引擎版本二: tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04-x86_64 引擎版本三:tensorflow_2
Framework功能介绍 MoXing Framework模块为MoXing提供基础公共组件,例如访问华为云的OBS服务,和具体的AI引擎解耦,在ModelArts支持的所有AI引擎(TensorFlow、MXNet、PyTorch、MindSpore等)下均可以使用。目前,提供的MoXing F
w,MindSpore等常用AI引擎框架,镜像命名以AI引擎为主,并且每个镜像里面都预置了很多常用包,用户可以直接使用而无需重新安装。 ModelArts开发环境提供的预置镜像主要包含: 常用预置包:基于标准的Conda环境,预置了常用的AI引擎,常用的数据分析软件包,例如Pan
模型适配 MindSpore Lite是华为自研的推理引擎,能够最大化地利用昇腾芯片的性能。在使用MindSpore Lite进行离线推理时,需要先将模型转换为mindir模型,再利用MindSpore Lite作为推理引擎,将转换后的模型直接运行在昇腾设备上。模型转换需要使用converter_lite工具。
0-python2.7”。 engine_name String 引擎规格的名称。如“Caffe”。 engine_version String 引擎规格的版本。对一个引擎名称,有多个版本的引擎,如使用python2.7的"Caffe-1.0.0-python2.7"等。 v1_compatible
在ECS中通过Dockerfile从0制作自定义镜像用于推理 针对ModelArts目前不支持的AI引擎,您可以针对该引擎构建自定义镜像,并将镜像导入ModelArts,创建为AI应用。本文详细介绍如何使用自定义镜像完成AI应用的创建,并部署成在线服务。 操作流程如下: 本地构建
时,请选择您使用的引擎所对应的运行时环境。目前支持的运行时环境列表请参见推理支持的AI引擎。 需要注意的是,如果您的模型需指定CPU或GPU上运行时,请根据runtime的后缀信息选择,当runtime中未包含cpu或gpu信息时,请仔细阅读“推理支持的AI引擎”中每个runtime的说明信息。
本章节介绍了在ModelArts中模型推理代码编写的通用方法及说明,针对常用AI引擎的自定义脚本代码示例(包含推理代码示例),请参见自定义脚本代码示例。本文在编写说明下方提供了一个TensorFlow引擎的推理代码示例以及一个在推理脚本中自定义推理逻辑的示例。 ModelArts推
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上
从0-1制作自定义镜像并创建AI应用 针对ModelArts目前不支持的AI引擎,您可以针对该引擎构建自定义镜像,并将镜像导入ModelArts,创建为AI应用。本文详细介绍如何使用自定义镜像完成AI应用的创建,并部署成在线服务。 操作流程如下: 本地构建镜像:在本地制作自定义镜
indSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用于访问OBS服务,和具体的AI引擎解耦,在ModelArts支持的所有AI引擎(TensorFlow、MX
#获取文件当前工作目录路径(绝对路径) os.path.realpath(__ file __) #获得文件所在的路径(绝对路径) 也可在搜索引擎寻找其他获取文件路径的方式,使用获取到的路径进行文件读写。 父主题: 编写训练代码
figmap中故障NPU信息和strategy.proto文件生成策略恢复文件。 训练脚本根据策略恢复文件,加载临终ckpt进行续训练。 在数据并行场景下,也是类似的流程,只是更为简单,无需生成并行策略文件和策略恢复文件,只要保存和加载临终ckpt文件即可。 特性使用操作 安装优雅退出二进制包
上传镜像 操作场景 客户端上传镜像,是指在安装了容器引擎客户端的机器上使用docker命令将镜像上传到容器镜像服务的镜像仓库。 如果容器引擎客户端机器为云上的ECS或CCE节点,根据机器所在区域有两种网络链路可以选择: 如果机器与容器镜像仓库在同一区域,则上传镜像走内网链路。 如
重装的包与镜像装CUDA版本不匹配 问题现象 在现有镜像基础上,重新装了引擎版本,或者编译了新的CUDA包,出现如下错误: 1.“RuntimeError: cuda runtime error (11) : invalid argument at /pytorch/aten/s
ut_cuda_frame failed with error code 0” 原因分析 出现该问题的可能原因如下: pytorch1.4引擎与之前pytorch1.3版本兼容性问题。 处理方法 在images之后添加contigous。 images = images.cuda()